ÀÇ·á »ê¾÷ÀÇ Áöµµ¸¦ ¹Ù²Ù´Â ÀΰøÁö´É | |
Áö³ ¼ö½Ê ³â°£ ÀÇ·á ¼ºñ½º ºÐ¾ß¿¡¼´Â Çع¬Àº °ü·áÁÖÀÇÀû ³íÀï ¿Ü¿¡ Ưº°ÇÑ ¹ßÀüÀÌ ´«¿¡ ¶çÁö ¾Ê¾Ò´Ù. ¹Ý¸é °°Àº ±â°£ µ¿¾È ÀΰøÁö´É°ú °ü·Ã ±â¼úÀº ±Þ¼ÓÇÑ ¼ºÀåÀ» º¸¿´´Ù. ÀΰøÁö´É ±â¼úÀÌ ÀÇ·á ¼ºñ½º »ê¾÷¿¡ Á¢¸ñµÈ´Ù¸é ¾î¶² ÀÏÀÌ ¹ú¾îÁú °ÍÀΰ¡? ±âÁ¸ ÀÇ·á Àü¹®°¡µé¿¡°Ô´Â ¹«½¼ ÀÏÀÌ ÀϾ±î? |
Áö³ ¼ö½Ê ³â°£ ÀÇ·á ¼ºñ½º ºÐ¾ß¿¡¼´Â Çع¬Àº °ü·áÁÖÀÇÀû ³íÀï ¿Ü¿¡ Ưº°ÇÑ ¹ßÀüÀÌ ´«¿¡ ¶çÁö ¾Ê¾Ò´Ù. ¹Ý¸é °°Àº ±â°£ µ¿¾È ÀΰøÁö´É°ú °ü·Ã ±â¼úÀº ±Þ¼ÓÇÑ ¼ºÀåÀ» º¸¿´´Ù. ÀΰøÁö´É ±â¼úÀÌ ÀÇ·á ¼ºñ½º »ê¾÷¿¡ Á¢¸ñµÈ´Ù¸é ¾î¶² ÀÏÀÌ ¹ú¾îÁú °ÍÀΰ¡? ±âÁ¸ ÀÇ·á Àü¹®°¡µé¿¡°Ô´Â ¹«½¼ ÀÏÀÌ ÀϾ±î?
¿ÀǼҽº ÀΰøÁö´ÉÀº ¼ö¸¹Àº »ê¾÷À» ±Þ°ÝÇÏ°Ô ¹Ù²ã ³õÀ» Çõ½ÅÀû ±â¼úÀÌ´Ù. Æä´Ï½Ç¸°ÀÇ ¹ß¸í ÀÌ·¡ ÀÇ·á »ê¾÷¿¡ °¡Àå Å« Çõ¸íÀÌ µÉ ÀΰøÁö´ÉÀÇ Àû¿ëÀÌ ¾î¶»°Ô ÀÌ·ïÁúÁö »ìÆ캸ÀÚ. ÇöÀç ¹Ì±¹ÀÇ ÀÇ·á »ê¾÷¸¸Å Çõ½ÅÀÌ ÇÊ¿äÇÑ °÷µµ ¾ø´Âµ¥, ´ÙÀ½°ú °°Àº ¹®Á¦µé¿¡ Á÷¸éÇØ ÀÖ´Ù.
¢º ¾àÇ° °³¹ßÀÇ ¾î·Á¿ò | Á¦¾à»çµéÀº »ý¸íÀ» ±¸ÇÒ ¼ö ÀÖ´Â »õ Ä¡·áÁ¦ °³¹ß¿¡ ¼ö½Ê ¾ï ´Þ·¯¸¦ ½ñ¾Æº×°íµµ ¹Ì±¹ ½ÄÇ°ÀǾ౹FDAÀÇ ½ÂÀÎÀÌ ³ª±â±îÁö 10¿© ³âÀ» ±â´Ù·Á¾ß ÇÑ´Ù.
¢º ºñÈ¿À²Àû 20¼¼±â ÀÇ·á ½Ã½ºÅÛ | ȯÀÚ¸¦ ³Ê¹« ¿À·¡ ±â´Ù¸®°Ô ÇÏ°í, Àǻ簡 ó¸®ÇØ¾ß ÇÒ ¼·ù°¡ ¾µµ¥¾øÀÌ ¸¹´Ù.
¢º ³ë·ÉÈ¿Í ¸Â¹°¸° ÀÇ»ç ºÎÁ· | 2050³âÀÌ µÇ¸é ¹Ì±¹ÀÎ 5¸í Áß 1¸íÀº 65¼¼°¡ ³Ñ´Â´Ù. ¶§¹®¿¡ ÀÇ·á ½Ã½ºÅÛ ºÎÇÏ°¡ ´õ¿í °úÁßÇØÁú °ÍÀÌ´Ù.
¢º ÅëÁ¦¸¦ ³Ñ¾î¼± ºñ¿ë ±¸Á¶ | Á¤ºÎ ¿¹Ãø¿¡ µû¸£¸é 2021³â ¹Ì±¹ÀεéÀÌ ÀÇ·áºñ·Î ÁöÃâÇÒ ºñ¿ëÀº 4Á¶ 8,000¾ï ´Þ·¯·Î, Àüü GDPÀÇ 20%¿¡ ÇØ´çÇÑ´Ù. ÀÌ ±Ô¸ð´Â 2010³â 2Á¶ 6,000¾ï ´Þ·¯ÀÇ °ÅÀÇ µÎ ¹è, 1970³â 750¾ï ´Þ·¯ÀÇ 64¹è¿¡ ´ÞÇÑ´Ù.
¢º °úÀ× Áø·á¸¦ ºÎÃß±â´Â ÀÇ·á ½Ã½ºÅÛ | ÀÇ·á ¼Ò¼ÛÀ» ÇÇÇϱâ À§ÇØ ÀÇ»çµéÀÌ °úµµÇÑ Ã³Ä¡¿Í ÀýÂ÷¸¦ ÁøÇàÇÑ´Ù.
¢º ÀÇ·á ¼Ò¼ÛÀ» ÇÇÇϱâ À§ÇÑ ÀÇ·á ½Ã½ºÅÛ | ÇöÀç ½Ã½ºÅÛ ÇÏ¿¡¼ ÀÇ»çµéÀº ÀÇ·á °ú½Ç ¼Ò¼ÛÀ» ÇÇÇϱâ À§ÇÏ¿© °úµµÇÑ Ã³Ä¡¿Í ÀÇ·á ÀýÂ÷¸¦ ¹â´Â´Ù. ÇÁ¶óÀ̽º¿öÅÍÇϿ콺ÄíÆÛ½º¿¡ µû¸£¸é ¸Å³â ȯÀÚ¿¡°Ô ÇÊ¿äÄ¡ ¾ÊÀº Ä¡·á¿¡ ³¶ºñµÇ´Â µ·ÀÌ 1Á¶ 2õ¾ï ´Þ·¯°¡ ³Ñ´Â´Ù°í ÇÑ´Ù.
¿©±â¼ ÁÁÀº ¼Ò½Ä ÇÑ °¡Áö´Â, ÀΰøÁö´É¿¡ ±â¹ÝÇÑ Çõ½ÅÀÌ ÀÌ·¯ÇÑ ¸ðµç ¹®Á¦µéÀ» ÀÏ°Å¿¡ ÇØ°áÇÒ ¼ö ÀÖ´Ù´Â °ÍÀÌ´Ù. ¿¹¸¦ µé¸é ÀΰøÁö´É ½Ã½ºÅÛÀº ¸»À» ÀνÄÇÏ°í, À̹ÌÁö¸¦ ºÐ¼®ÇÏ°í, Àü ¼¼°è ¸ðµç ÀÇ·á ÀâÁöÀÇ Áö½ÄÀ» Èí¼öÇÏ°í, ȯÀÚÀÇ Áõ»ó¿¡¼ ÆÐÅÏÀ» ã¾Æ³» Á¤È®ÇÑ Áø´ÜÀ» ³»¸± ¼ö ÀÖ´Ù.
¾÷°è¸¦ ¼±µµÇÏ´Â ±â¼ú ±â¾÷µéÀÌ ÀÇ·á »ê¾÷ ½ÃÀåÀ» °Ü³ÉÇÑ ÀΰøÁö´É ÇÁ·ÎÁ§Æ®¸¦ ¿¬±¸ ÁßÀ̶ó´Â Á¡Àº º°·Î ³î¶ó¿ï °ÍÀÌ ¾ø´Ù. IBM¿¡ µû¸£¸é 2020³âÀÌ µÇ¸é ÀÇ·á µ¥ÀÌÅÍ°¡ 73Àϸ¶´Ù 2¹è·Î Áõ°¡ÇÏ°Ô µÉ °ÍÀ̶ó°í ÇÑ´Ù. <¿ÍÀ̾îµå´åÄÄ>Àº ÇöÀç ÀÇ»çµéÀÌ »õ·Î Ãâ°£µÇ´Â ÀÇÇÐ ¿¬±¸ ÀڷḦ Àд µ¥¸¸ ÁÖ´ç 160½Ã°£À» ÇÒ¾ÖÇØ¾ß ÇÑ´Ù°í º¸µµÇß´Ù. ºÐ¸í ¾î¶² Àǻ糪 º´¿øµµ ÀÌ·± Á¤µµÀÇ µ¥ÀÌÅÍ È«¼ö¸¦ Á¦´ë·Î ó¸®ÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀº ¾øÀ» °ÍÀÌ´Ù. ±×·¯³ª IBMÀÇ ½´ÆÛÄÄÇ»ÅÍ ¿Ó½¼Àº ´Ü 15Ãʸ¸¿¡ 4,000¸¸ °³ÀÇ ¹®¼¸¦ Àо ¼ö ÀÖÀ¸¸ç, ȯÀÚ 150¸¸ ¸íÀÇ ÀÇ·á ±â·Ï¿¡¼ ƯÁ¤ ÆÐÅÏÀ» ã¾Æ³¾ ¼ö ÀÖ´Ù. ±×¸®°í ÃÖ±Ù IBMÀÌ ¸ÓÁö ÇコÄɾîMerge Healthcare¸¦ ÀμöÇÏ¿© ¿Ó½¼Àº ȯÀÚÀÇ X·¹À̳ª MRI »çÁøÀ» ÀÌ È¸»ç ¾ÆÄ«À̺꿡 ÀÖ´Â 300¾ï ÀåÀÇ ÀÇ·á »çÁø°ú ºñ±³ÇØ º¼ ¼ö ÀÖ°Ô µÇ¾ú´Ù.
ÀÌ·¯ÇÑ ´É·ÂµéÀ» ÅëÇØ ¿Ó½¼Àº Àǻ纸´Ùµµ ´õ Á¤È®È÷ Áø´ÜÀ» ³»¸± ¼ö ÀÖ°Ô µÆ´Ù. ½ÇÁ¦ ÀÇ·á ȸ»ç À£Æ÷ÀÎÆ®Wellpoint¿Í ¼öÇàÇÑ ½ÇÇè¿¡¼ ¿Ó½¼Àº 90%ÀÇ Á¤È®µµ·Î Æó¾Ï ȯÀÚ¸¦ Áø´ÜÇس´Ù. 90%¶ó°í ÇÏ´Ï ¿Ïº®ÇÏÁö´Â ¾ÊÀº µí µé¸®°ÚÁö¸¸, ¼÷·ÃµÈ ÀÇ»çÀÇ Áø´Ü ¼º°ø·üÀÌ 50%¿¡ ºÒ°úÇÏ´Ù´Â Á¡À» »ý°¢ÇÏ¸é ³î¶ó¿î ¼öÄ¡´Ù. IBMÀÌ °³¹ßÇÑ ¾ÖÇø®ÄÉÀÌ¼Ç ¡®¿Ó½¼ °Ç° ÀΰøÁö´ÉWatson Health AI¡¯Àº ÇöÀç ¹Ì±¹ 16°³ ¾Ï ¿¬±¸¼Ò¿¡¼ ȯÀÚ¸¦ Áø´ÜÇÏ°í ó¹æÇÏ´Â µ¥ »ç¿ëµÇ°í ÀÖ´Ù. ÇコÄɾî´ÙÀ̺ê´åÄÄHealthcareDive.com¿¡ µû¸£¸é ¿Ó½¼Àº Á¸½¼¾ØÁ¸½¼°úÀÇ Çù·Â ÇÏ¿¡ Àΰø °üÀýÀ» »ç¿ëÇϴ ȯÀÚµéÀÇ °Ç°°ü¸®¿¡ »ç¿ëµÇ°í ÀÖÀ¸¸ç, ¸ÞƮƮ·Î´ÐMedtronic°ú Á¦ÈÞÇÏ¿© Ç÷´ç °ü¸®°¡ ÇÊ¿äÇÑ ´ç´¢ ȯÀÚ¸¦ ÆľÇÇÏ´Â ÀÏ¿¡ ¾²ÀÌ°í ÀÖ´Ù.
±¸±ÛÀº ¡®µö¸¶Àεå ÇコDeepMind Health¡¯¶ó´Â ÀΰøÁö´É ½Ã½ºÅÛÀ» Á÷Á¢ °³¹ßÇß´Ù. ÀÌ ½Ã½ºÅÛÀº ȯÀÚ¿¡°Ô ¾ðÁ¦ ÀÀ±Þ Ä¡·á°¡ ÇÊ¿äÇÑÁö¸¦ Àǻ翡°Ô ¾Ë·ÁÁÖ°í, ¾à¹° ¹ÝÀÀ¿¡ ´ëÇØ Á¶¾ðÇÏ°í, ȯÀÚ¿¡°Ô ¹ß»ýÇÒ ¼ö ÀÖ´Â °Ç°»óÀÇ ¹®Á¦¸¦ ±× ¹®Á¦°¡ ¹ß»ýÇϱâ Àü¿¡ ¿¹ÃøÇÏ´Â ¿ªÇÒÀ» ÇÑ´Ù. ÃʱâÀÇ µö¸¶Àεå Çコ ÇÁ·Î±×·¥ Áß ÇϳªÀÎ ¡®½ºÆ®¸²½ºStreams¡¯´Â Àǻ簡 Áö±Ý±îÁöº¸´Ù ÈξÀ »¡¸® ÀÇÇÐ °Ë»ç °á°ú¸¦ ¹Ù·Î È®ÀÎÇÒ ¼ö ÀÖµµ·Ï ÇØÁØ´Ù. ¿¹¸¦ µé¸é ¿Õ¸³ÀÚ¼±º´¿øRoyal Free Hospital¿¡¼ ½Ç½ÃÇÑ ÇÑ ½Ã¹ü ÇÁ·ÎÁ§Æ®¿¡¼´Â Àǻ簡 Ç÷¾× °Ë»ç¸¦ ÇÑ ÈÄ ¼öÃÊ ¸¸¿¡ ȯÀÚÀÇ ±Þ¼º½Å¼Õ»óaccute kidney injury À§Çè ¿©ºÎ¸¦ ¾Ë ¼ö ÀÖ¾ú´Ù. ±ÞÈ÷ Ä¡·áÇØ¾ß ÇÒ È¯ÀÚÀÇ °æ¿ì ¿¬±¸½Ç¿¡¼ °á°ú°¡ ³ª¿À±æ ±â´Ù¸®Áö ¾Ê°í °ð¹Ù·Î Ä¡·áÇÒ ¼ö ÀÖ°Ô ÇØ ÁØ °ÍÀÌ´Ù.
IBMÀÇ ¿Ó½¼°ú ±¸±ÛÀÇ µö¸¶Àε尡 ÀÇ·áÁøÀÇ Á¤È®ÇÑ ÀÇ»ç °áÁ¤°ú »ý¸í ±¸Á¦¸¦ µ½´Â´Ù¸é, ºñ¿ë Àý°¨À» ÁÖµÈ ¸ñÀûÀ¸·Î ÇÏ´Â ÀΰøÁö´É ½Ã½ºÅÛµµ ÀÖ´Ù. ¡®ÇÁ¶ô½Ã½º ÄܼÁÆ® ÇÁ·Î¼¼½ÌPraxis Concept Processing¡¯Àº ÀΰøÁö´É ±â¹ÝÀÇ ¼ÒÇÁÆ®¿þ¾î ÇÁ·Î±×·¥À¸·Î, Àǻ簡 ¸»Çϰųª ±â·ÏÇÑ ³»¿ëÀ» ¸ðµÎ ¼öÁýÇÏ¿© ±× ȯÀÚÀÇ »óÅÂ¿Í °¡Àå À¯»çÇÑ ÃÖ±Ù µ¥ÀÌÅ͸¦ ã¾Æ³½´Ù. ¾î¶² ȯÀÚÀÇ Áõ»óÀÌ ±× ÀÌÀü ȯÀÚ¿Í µ¿ÀÏÇÒ ¼öµµ ÀÖ´Ù. ÇÁ¶ô½Ã½º À¥»çÀÌÆ®¿¡ µû¸£¸é, ´ç½ÅÀÌ °¡Àå ÃÖ±Ù¿¡ ¸¸³µ´ø ȯÀÚÀÇ Áõ»ó°ú ÇöÀç ȯÀÚÀÇ Áõ»óÀÌ µ¿ÀÏÇÏ´Ù¸é, ´ç½ÅÀº ÇÒ ÀÏÀ» ´Ù ÇÑ °ÍÀ̳ª ´Ù¸§¾ø´Ù. ÇÁ¶ô½Ã½ºÀÇ ÀüÀÚ ÀÇ·á ±â·Ï ÀåÄ¡°¡ °ð¹Ù·Î ´ç½ÅÀÌ ÀÌÀü¿¡ Çß´ø Ä¡·á¹ýÀ» ³»³õÀ» °ÍÀÌ´Ù. ¶ÇÇÑ ´ç½ÅÀÇ Ã³¹æÀüÀ» ÀμâÇÏ°í, ȯÀÚ¿Í ´Ù¸¥ ÀÇ·áÁø¿¡°Ô ó¹æ¿¡ ´ëÇÑ ¼³¸í°ú Áö½Ã¸¦ ³»¸®°í, ¾àÇ° ÁÖ¹®°ú ¸ðµç ÇÊ¿äÇÑ ¼·ùµéÀ» ó¸®ÇØ ÁÙ °ÍÀÌ´Ù. ÀÌ·¯ÇÑ ¸ðµç °úÁ¤ÀÌ Å« ÈûÀ» µéÀÌÁö ¾Ê¾Æµµ ´« ±ôºýÇÒ µ¿¾È¿¡ µ¿½Ã´Ù¹ßÀûÀ¸·Î ÀÌ·ïÁø´Ù!
Áõ»óÀÌ À¯»çÇÏÁö¸¸ µ¿ÀÏÇÏÁö ¾Ê´Ù¸é, ÀÌÀü »ç·Ê¿ÍÀÇ Â÷ÀÌÁ¡À» Á÷Á¢ ¼ÕÀ¸·Î ¾²°Å³ª À½¼º ÀÎ½Ä ±â´ÉÀ̳ª Å°º¸µå·Î ¼öÁ¤ÇÏ¸é µÈ´Ù. ÇÁ¶ô½Ã½ºÀÇ ÀåÁ¡Àº ±× ¸ðµç ¼öÁ¤»çÇ×À» ±â¾ïÇÑ´Ù´Â °ÍÀÌ´Ù. ±×·¡¼ ´ÙÀ½ ȯÀÚ°¡ µÎ °¡Áö À¯»ç »ç·Ê Áß°£ÂëÀÇ Áõ»óÀ» º¸Àδٸé, ÀÇ»çÀÇ ±â·ÏÀº ¹ÝÀ¸·Î ³ª´²Áú °ÍÀÌ°í, ÀÌÈÄ ´ÙÀ½¿¡ ¶Ç ±×·± »ç·Ê°¡ ¹ß»ýÇϸé 1/4·Î, ¶Ç 1/8·Î °è¼Ó ³ª´µ°Ô µÈ´Ù. Áï ÇÁ¶ô½Ã½º´Â »ç¿ëÇϸé ÇÒ¼ö·Ï ´õ »¡¶óÁö°í ¶È¶ÈÇØÁø´Ù. °á±¹ ¾î´À ¼ø°£ÀÌ µÇ¸é ÇÁ¶ô½Ã½º´Â °á±¹ ÀÇ»çÀÇ ¿ª·®ÀÌ ±×´ë·Î Åõ¿µµÈ °Å¿ï °°Àº Á¸Àç°¡ µÇ´Â °ÍÀÌ´Ù. ÀÌ·¸°Ô µÇ¸é ÀÇ»çµéÀº ÀϹÝÀûÀÎ Áõ»ó¿¡ ´ëÇØ ´õ ºü¸£°Ô ó¹æÀ» ³»¸± ¼ö ÀÖ°í, ÀÇ»çÀÇ ÁÖÀÇ°¡ ÇÊ¿äÇÑ Æ¯ÀÌÇÑ ¹®Á¦¸¦ °¡Áø ȯÀڵ鿡°Ô ´õ ¸¹Àº ½Ã°£À» ÇÒ¾ÖÇÒ ¼ö ÀÖ´Ù.
ÇÑÆí ¾ÖÇÃ, µ¨, ÈÞ·¿ÆÑÄ¿µå, È÷Ÿġ ¶ÇÇÑ ÀÇ·á »ê¾÷À» À§ÇÑ ÀΰøÁö´É ¼Ö·ç¼ÇÀ» °³¹ß ÁßÀ̶ó°í º¸µµµÇ¾ú´Ù. ÄÁ¼³Æà ȸ»ç ÇÁ·Î½ºÆ® & ¼³¸®¹øFrost & Sullivan¿¡ µû¸£¸é, ÀÇ·á »ê¾÷¿¡¼ ÀΰøÁö´ÉÀÇ È°¿ë °¡Ä¡´Â 2014³â 6¾ï ´Þ·¯¿¡¼ 2021³â¿¡´Â 60¾ï ´Þ·¯·Î Ä¡¼ÚÀ» Àü¸ÁÀÌ´Ù. ¿©±â¿¡´Â ÀΰøÁö´ÉÀÇ ½Å¾à °³¹ß ºÐ¾ß ÁøÀÔ±îÁö Æ÷ÇԵǾî ÀÖ´Ù. Àΰ£ ¿¬±¸ÀÚ´Â ÇÑ ¹ø¿¡ Çϳª¾¿ÀÇ ¼ººÐ Á¶ÇÕÀ» ½ÇÇèÇÒ ¼ö¹Û¿¡ ¾øÁö¸¸, ÀΰøÁö´ÉÀº °¡´ÉÇÑ ¼ººÐ Á¶ÇÕÀ» ¸ðµÎ µ¿½Ã¿¡ ÃøÁ¤ÇØ ½Å¾àÀ» °³¹ßÇÒ ¼ö ÀÖ´Ù.
¿¹¸¦ µé¾î Á¦¾à ºÐ¾ß ½ºÅ¸Æ®¾÷ ȸ»ç º£¸£±× ÇコBerg Health´Â ÃÖ±Ù ÀΰøÁö´ÉÀ» Å×½ºÆ®¿¡ È°¿ëÇØ °³¹ß¿¡ Âø¼öÇÑ Áö 7³â ¸¸¿¡ ¾Ï Ä¡·áÁ¦¸¦ Ãâ½ÃÇÑ´Ù°í ¹ßÇ¥Çß´Ù. º¸Åë ½Å¾à °³¹ß¿¡ 14³â Á¤µµ ¼Ò¿äµÈ´Ù´Â Á¡À» °¨¾ÈÇϸé ÀΰøÁö´É ´ö¿¡ °³¹ß ±â°£ÀÌ Àý¹ÝÀ¸·Î ÁÙ¾îµç °ÍÀÌ´Ù. ÀÌ È¸»ç´Â ÀΰøÁö´ÉÀ» ÀÌ¿ëÇØ ÃéÀå¾Ï, ¹æ±¤¾Ï, ³ú¾Ï ȯÀÚÀÇ Á¶Á÷ »ùÇ÷κÎÅÍ 14Á¶ °³ÀÇ µ¥ÀÌÅ͸¦ ÃßÃâÇÏ¿© Á¤»óÀÎÀÇ »ùÇðú ºñ±³Çß´Ù. ¶Ç ÀÌ ½Ã½ºÅÛÀº »ý¹°ÇÐÀû ÇÁ·ÎÇÊ °£ÀÇ Â÷À̸¦ ±¸ºÐÇÏ°í ½Å¾à Åõ¾àÀ» ÅëÇØ ÃÖ»óÀÇ °á°ú¸¦ ¾òÀº ȯÀÚµéÀ» °ñ¶ó³Â´Ù.
º£¸£±× »çÀÇ °øµ¿ â¾÷ÀÚÀÌÀÚ Á¾¾çÇÐÀÚÀÎ ´Ïºì ³ª·¹ÀÎNiven Narain ¹Ú»ç¿¡ µû¸£¸é ÀϹÝÀûÀ¸·Î ½Å¾àÀ» ½ÃÀå¿¡ Ãâ½ÃÇÏ·Á¸é 25¾ï ´Þ·¯ÀÇ ºñ¿ë°ú 12~14³âÀÇ ±â°£ÀÌ ÇÊ¿äÇѵ¥, ÀΰøÁö´ÉÀ» ÀÌ¿ëÇØ ºñ¿ë°ú ½Ã°£À» Àý¹ÝÀ¸·Î ÁÙÀÏ ¼ö ÀÖ¾ú´Ù°í ÇÑ´Ù. ¡°°ú°Å¿¡´Â ½ÃÇàÂø¿Àµµ ¸¹¾Ò°í, ÀÓ»ó ½ÇÇèÀÇ ½ÇÆÐ Å¿¿¡ ºñ¿ëµµ ¸¹ÀÌ µé¾ú´Ù. ±×·¯³ª ÀÌÁ¦ ¿ì¼öÇÑ ¿¹Ãø°ú È¿À²Àû ½ÇÇèÀÌ °¡´ÉÇØÁ³´Ù. ´öºÐ¿¡ õ¹®ÇÐÀûÀÎ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ°Ô µÆ´Ù.¡±
ÀÇ·áºñ¿ë Àý°¨À» À§ÇØ ÇÏÀεå»çÀÌÆ®Hindsait¶ó´Â ȸ»ç´Â ÀÇ»ç¿Í º¸Çè»çµéÀÌ Ã³¹æÀü¿¡ ÇʼöÀûÀÌÁö ¾Ê°Å³ª ÀÇÇÐÀûÀ¸·Î ºÒÇÊ¿äÇÑ ºÎºÐÀ» Ç¥½ÃÇÒ ¼ö ÀÖ°Ô ÇÏ´Â ÀΰøÁö´É Ç÷§ÆûÀ» ³»³õ¾Ò´Ù. »õ·Î ¶°¿À¸£´Â Á¤¹Ð ÀÇÇÐ ºÐ¾ß¿¡¼ ÀΰøÁö´ÉÀº ȯÀÚÀÇ ÇöÀç Áúº´»Ó ¾Æ´Ï¶ó °íÀ¯ÇÑ ÀÇ·á ÀÌ·Â, »ýÈ°½À°ü, À¯ÀüÀû Ư¼º¿¡ ¸ÂÃá ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â µ¥ È°¿ëµÇ°í ÀÖ´Ù. ÀÌ·¸°Ô µ¥ÀÌÅÍ¿¡ ±Ù°ÅÇØ ÀÇ»ç°áÁ¤À» ³»¸®´Â ÀÏ¿¡´Â ÀΰøÁö´ÉÀÌ Àΰ£º¸´Ù ¿ì¿ùÇÏ´Ù´Â Á¡ÀÌ ÀÔÁõµÇ¾ú´Ù.
±×·¸´Ù¸é °ü·Ã ±â¾÷µéÀº ÀÌ·¯ÇÑ ±âȸ¸¦ ¾î¶»°Ô È°¿ëÇØ¾ß ÇÒ °ÍÀΰ¡? IBMÀÇ ¡®¿Ó½¼ °Ç° ºÎ¹®¡¯ ºÎȸÀå ¾Æ´Ò ÀÚÀÎAnil Jain ¹Ú»ç´Â ¼±µµÀûÀÎ ÀÇ·á ±â¾÷µéÀÌ ´ÙÀ½°ú °°Àº Áú¹®¿¡ ´ëÇÑ ´äÀ» ã¾Æ¾ß ÇÒ ¶§¶ó°í ¸»ÇÑ´Ù.
¢º ȯÀÚ¿¡°Ô ¿Ã¹Ù¸¥ óġ¸¦ Çϱâ À§Çؼ »ý¼ºµÈ ¸ðµç µ¥ÀÌÅ͸¦ ¾î¶»°Ô ÅëÇÕÇÒ °ÍÀΰ¡?
¢º ÀÇ·á Áú °³¼±À» À§Çؼ´Â µ¥ÀÌÅͷκÎÅÍ ¾î¶»°Ô ÅëÂû·ÂÀ» ²ø¾î³¾ ¼ö ÀÖÀ»±î?
¢º ÀÇ·áÁøÀÌ ÃÖ°í ¼öÁØÀÇ °á°ú¸¦ ³¾ ¼ö ÀÖµµ·Ï ÇÏ·Á¸é ¾î¶»°Ô µ¥ÀÌÅ͸¦ Á¦°øÇØ¾ß ÇÒ °ÍÀΰ¡?
¢º ÀÌ ÀϵéÀ» ¾î¶»°Ô È¿À²ÀûÀÎ ºñ¿ëÀ¸·Î ¼öÇàÇÒ °ÍÀΰ¡?
ÀÚÀÎ ¹Ú»ç´Â ÀΰøÁö´ÉÀ» ¹Þ¾ÆµéÀÌ´Â µ¥ ½ÇÆÐÇÏ´Â ±â¾÷Àº Á¶ÁöÇÁ ½·ÆäÅÍ°¡ ¡°Ã¢Á¶Àû Æı«¡±¶ó ĪÇÑ Çö»ó¿¡¼ ÆйèÀÚÀÇ ±æÀ» °È°Ô µÉ °ÍÀ̶ó°í °á·Ð ³»·È´Ù. ¡°°æÀï ½ÃÀå¿¡ Âü¿©ÇÑ ±â¾÷µé ¸ðµÎ¿¡°Ô °íµµÀÇ ±â¼ú ½Ã½ºÅÛÀ» µµÀÔÇØ¾ß ÇÏ´Â ÀÌÀ¯´Â °°´Ù. ±×·¸°Ô ÇÏÁö ¾Ê´Â ´ë°¡´Â ½·ÆäÅÍÁÖÀÇÀÚµéÀÌ ¸»ÇÏ´Â ¡®½ÃÀå¿¡¼ÀÇ Á×À½¡¯ÀÏ °ÍÀ̱⠶§¹®ÀÌ´Ù.¡±
¿ì¸®´Â ÀÌ·¯ÇÑ »ç½Ç°ú Æ®·»µå¸¦ ÅëÇØ ´ÙÀ½°ú °°ÀÌ ¿¹ÃøÇÒ ¼ö ÀÖ´Ù.
ù°, ÀΰøÁö´ÉÀº ÀÇ»çÀÇ ºÎÁ·À̶ó´Â ¾Ï¿ïÇÑ ¹Ì·¡¿¡ ÇØ°áÃ¥ÀÌ µÇ¾îÁÙ °ÍÀÌ´Ù.
¼ö³â ³», ¼öÁرÞÀÇ º¸Á¶¿øÀÌ Áö¿øÇÏ´Â ÀΰøÁö´É ±â¹ÝÀÇ Àü¹® ½Ã½ºÅÛÀÌ ÇöÀç ÃÖ°íÀÇ ÀÇ»çµéº¸´Ù ´õ È¿°úÀûÀ¸·Î ȯÀÚÀÇ ¾à 90%¸¦ Áø·áÇÒ ¼ö ÀÖ°Ô µÉ °ÍÀÌ´Ù. ±×¸®°í Á» ´õ ƯÀÌÇÑ Áõ»óÀ» °¡Áø ³ª¸ÓÁö 10%ÀÇ È¯ÀÚ´Â ÀΰøÁö´É ´ö¿¡ ½Ã°£À» ¹ø ÀÇ»çµéÀÌ Áø·áÇÒ ¼ö ÀÖ´Ù. Ķ¸®Æ÷´Ï¾Æ ÀÇ°ú´ëÇÐ ÇÐÀåÀÌÀÚ <<µðÁöÅÐ ´ÚÅÍDigital Doctor>>ÀÇ ÀúÀÚÀÎ ·Î¹öÆ® ¿ÓÅÍRobert Wachter ±³¼ö´Â ÇöÀç Àǻ縦 ã¾Æ Áø·á¸¦ ¹Þ´Â ȯÀÚµé Áß ´Ù¼ö°¡, ¾ÕÀ¸·Î ÀÇ»çÀÇ °¨µ¶ ÇÏ¿¡ µ¥ÀÌÅ͸¦ ÀÌÇØÇÏ°í ±×¿¡ µû¶ó ÇൿÇÏ´Â »õ·Î¿î ÇüÅÂÀÇ ÀÇ·á Àü¹®°¡µé¿¡°Ô ³Ñ°ÜÁú °ÍÀ̶ó°í ¸»ÇÑ´Ù. ¹Ì±¹ ³ëµ¿Åë°èûÀÇ ¿¹Ãø¿¡ ÀÇÇÏ¸é ¼ÒÀ§ ¡®°Ç° Á¤º¸ ±â¼úÀÚ¡¯¿¡ ´ëÇÑ ¼ö¿ä°¡ 2014³âºÎÅÍ 2024³â±îÁö 15% Áõ°¡ÇÒ °ÍÀ̶ó°í ÇÑ´Ù. ÀÌ´Â °°Àº ±â°£ Àüü ³ëµ¿½ÃÀåÀÇ ¿¹»ó ¼ºÀå·üÀ» ÈξÀ ¶Ù¾î³Ñ´Â ¼öÄ¡´Ù.
µÑ°, ÀΰøÁö´ÉÀÌ ÀÇ·á »ê¾÷À» ÀçÆíÇÔ¿¡ µû¶ó ¼Ò±Ô¸ð º´¿øÀ̳ª µ¶¸³ °³¿øÀÇ´Â ½ÃÀå¿¡¼ ÅðÃâµÉ °ÍÀÌ´Ù.
±×µéÀº ÀΰøÁö´É ±â¼ú¿¡ ÅõÀÚÇÒ ÀÚ±ÝÀ̳ª ½Ä°ß¿¡¼ ´ëÇü ÀÇ·á Á¶Á÷À» »ó´ëÇÒ ¼ö ¾øÀ» °ÍÀÌ°í, °á±¹ ³ôÀº ºñ¿ë, ºÎÁ¤È®ÇÑ Áø´Ü, ¿¹¾à°ú °Ë»ç¿¡ °É¸®´Â ¿À·£ ½Ã°£ ¶§¹®¿¡ ½ÃÀå¿¡¼ »ì¾Æ³²±â ¾î·Á¿ï °ÍÀÌ´Ù. ÀÌ·Î ÀÎÇØ ¼÷·ÃµÈ Àü¹®°¡¿Í ÀÚº»ÀÌ ÀÇ·á »ê¾÷ÀÇ ½ÂÀÚ¿¡°Ô ÁýÁßµÉ °ÍÀ¸·Î º¸ÀδÙ.
¼Â°, ÀΰøÁö´ÉÀº ±Þ°ÝÇÑ Àα¸ ³ë·ÉÈ¿¡ µû¸¥ ³ëÀÎ ÀÇ·áºñ¿ë Áõ°¡ ¹®Á¦¿¡ ´ë¾ÈÀ» Á¦°øÇØ ÁÙ °ÍÀÌ´Ù.
¾ÕÀ¸·Î ¼ºñ½º ·Îº¿°ú ÇÔ²² »ç¹°ÀÎÅͳÝÀ» ±â¹ÝÀ¸·Î ÇÑ ÀΰøÁö´É »ýȰȯ°æÀÌ µîÀåÇÒ °¡´É¼ºÀÌ ³ô´Ù. ÀΰøÁö´ÉÀº È¥ÀÚ¼´Â »ì ¼ö ¾ø´Â ´ë±Ô¸ðÀÇ ³ë·É Àα¸µéÀ» ¼Ò¼öÀÇ Àΰ£ °£º´Àθ¸À¸·Î È¿À²ÀûÀÎ ºñ¿ë ³»¿¡¼ °ü¸®ÇÒ ¼ö ÀÖ°Ô ÇØ ÁÙ °ÍÀÌ´Ù. Àΰ£Àº ´ÜÁö ÀΰøÁö´ÉÀÌ ¹®Á¦¸¦ Æ÷ÂøÇßÀ» ¶§¸¸ °³ÀÔÇÏ¸é µÈ´Ù.
³Ý°, ÀΰøÁö´ÉÀº ¿ÏÀüÈ÷ ÀÚµ¿ÈµÈ Å×½ºÆ® °úÁ¤À» ÅëÇØ ½Å¾à °³¹ßÀ» °¡¼ÓÈÇÒ °ÍÀÌ´Ù. ¿¹¸¦ µé¸é µ¿ÀÏ ¼¼Æ÷µé·Î ¼öõ °¡ÁöÀÇ Á¶ÇÕÀ» ½ÃÇèÇÒ ¼ö ÀÖ°í ±× °á°ú¸¦ ÇØ´ç ¼¼Æ÷ÀÇ À¯ÀüÇÐÀû Ư¼º°ú ¿¬°üÁöÀ» ¼ö ÀÖ´Ù. À̸¦ ÅëÇØ ¾Ï¿¡ ´ëÇÑ ÃÖÀûÀÇ Ä¡·á¹ý ¹ß°ßÀÌ ¾Õ´ç°ÜÁö°í ¾ËÃ÷ÇÏÀ̸Ó, ÆÄŲ½¼º´, ½ÉÀ庴 °°Àº ¸¸¼º ÁúȯÀÇ Ä¡·á¹ýµµ °³¹ßÇÒ ¼ö ÀÖÀ» °ÍÀÌ´Ù.
* *
References List :
1. For information about the rapidly increasing cost of healthcare, visit the Centers for Medicare & Medicaid Services website at:
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/index.html
2. For additional information about excessive healthcare costs, visit the Aetna website at:
http://www.aetna.com/health-reform-connection/aetnas-vision/facts-about-costs.html?TSPD_101_R0=7cb100b206709c2a01fad364fa0d4c2dw7O0000000000000000226ae5a2ffff00000000000000000000000000005758dc5500026457f5
3. Wired, February 11, 2013, ¡°IBM¡¯s Watson Is Better at Diagnosing Cancer than Human Doctors,¡± by Ian Steadman. ¨Ï 2013 Conde Nast. All rights reserved.
http://www.wired.co.uk/article/ibm-watson-medical-doctor
4. Forbes, August 12, 2015, ¡°IBM Acquires Merge Health to Supplement Watson Healthcare,¡± by Trefis Team. ¨Ï 2015 Forbes Media LLC. All rights reserved
http://www.forbes.com/sites/greatspeculations/2015/08/12/ibm-acquires-merge-health-to-supplement-watson-healthcare/-6f089d6a4f70
5. BigThink, May 10, 2016, ¡°How Artificial Intelligence Will Revolutionize Healthcare,¡± by Philip Perry. ¨Ï 2016 The Big Think Inc. All rights reserved.
http://bigthink.com/philip-perry/how-artificial-intelligence-will-revolutionize-healthcare
6. HealthcareDive, March 10, 2016, ¡°5 Ways Artificial Intelligence is Changing the Face of Healthcare,¡± by Meg Bryant. ¨Ï 2016 Industry Dive. All rights reserved.
http://www.healthcaredive.com/news/5-ways-artificial-intelligence-is-changing-the-face-of-healthcare/415424/
7. Bloomberg, February 24, 2016, ¡°Google¡¯s DeepMind Forms Health Unit to Build Medical Software,¡± by Jack Clark. ¨Ï 2016 Bloomberg L.P. All rights reserved.
http://www.bloomberg.com/news/articles/2016-02-24/google-s-deepmind-forms-health-unit-to-build-medical-software
8. iBid.
9. ExtremeTech, May 20, 2016, ¡°The Next Major Advance in Medicine Will Be the Use of AI,¡± by Jessica Hall. ¨Ï 2016 Ziff Davis, LLC. PCMag Digital Group. All rights reserved.
http://www.extremetech.com/extreme/228830-the-next-major-advance-in-medicine-will-be-the-use-of-ai
10. The Telegraph, October 9, 2015, ¡°Cancer Drug Development Time Halved Thanks to Artificial Intelligence,¡± by Ian Douglas. ¨Ï 2015 Telegraph Media Group Limited. All rights reserved.
http://www.telegraph.co.uk/technology/news/11920393/Cancer-drug-development-time-halved-thanks-to-artificial-intelligence.html
11. HealthcareDive, March 10, 2016, ¡°5 Ways Artificial Intelligence is Changing the Face of Healthcare,¡± by Meg Bryant. ¨Ï 2016 Industry Dive. All rights reserved.
http://www.healthcaredive.com/news/5-ways-artificial-intelligence-is-changing-the-face-of-healthcare/415424/
AI Transforms Healthcare
The game-changing technology of open-source artificial intelligence that we discussed this month in Trend #3 will dramatically transform countless industries. Let¡¯s explore how AI will unleash the biggest revolution in healthcare since the discovery of penicillin.
No industry is more ripe for disruption than the U.S. healthcare industry, which faces such problems as:
- Drug development obstacles that require pharmaceutical companies to pay billions to develop a life-saving new treatment, and then wait a dozen years for FDA approval.
- Inefficient twentieth century practices in doctors¡¯ offices and hospitals that lead to long waiting times for patients and mountains of paperwork for doctors.
- A critical shortage of doctors at the same time that the population is aging and putting even more pressure on the health care system; by 2050, one in five Americans will be over the age of 65.
- Costs that are outpacing inflation and spiraling out of control. According to government estimates, Americans will spend $4.8 trillion on healthcare in 2021, accounting for 20 percent of GDP. That¡¯s nearly double the $2.6 trillion spent in 2010, and 64 times the $75 billion spent in 1970.1
- A system that encourages doctors to order excessive tests and procedures in order to avoid malpractice suits. According to estimates by PricewaterhouseCoopers, as much as $1.2 trillion a year of healthcare spending is wasted on treatments that patients don¡¯t even need.2
The good news is that innovations based on artificial intelligence offer solutions to all of these problems.
For example, an AI system could recognize speech, analyze images, absorb all of the knowledge in all of the world¡¯s medical journals, detect patterns from a patient¡¯s symptoms, and then produce an accurate diagnosis.
Not surprisingly, leading tech firms are working on AI projects targeting healthcare. According to IBM, by 2020, the amount of medical data is expected to double every seventy-three days. Wired.com reported that a doctor would have to spend 160 hours a week to read the new medical research that is published.3
Clearly, there¡¯s no way that any doctor or hospital could keep up with that deluge of data. But IBM¡¯s Watson supercomputer needs only fifteen seconds to read 40 million documents. It can also look for patterns in the medical records of 1.5 million patients. And since IBM recently acquired Merge Healthcare, Watson can compare any photograph, X-ray, or MRI of a patient to Merge¡¯s archive of thirty billion medical images.4
With that power at its disposal, Watson can often make more accurate diagnoses than doctors. In fact, in a series of experiments conducted with the healthcare firm Wellpoint, Watson correctly diagnosed lung cancer in 90 percent of cases. While that isn¡¯t quite perfect, consider that the success rate for trained physicians is only 50 percent. That¡¯s no better than a coin flip.
The application that IBM developed, called Watson Health AI, is now used by sixteen cancer institutes in the U.S. to diagnose and treat patients, according to a post on BigThink.com.5
And according to HealthcareDive.com, ¡°Watson is also partnering with Johnson & Johnson to use AI to help joint replacement patients better manage their health. It is also partnering with Medtronic with the goal of being able to predict which diabetes patients need more help in keeping their blood sugar under control.¡±6
Google has developed its own AI offering for healthcare, called DeepMind Health.7 The system will notify doctors when patients need urgent treatments, advise them of any potential drug interactions, and anticipate the health problems that a patient will face before those problems occur.
One early DeepMind Health application is called Streams, a program that enables doctors to see the results of medical tests instantly, which is unprecedented. For example, a pilot project at the Royal Free Hospital gave physicians the ability to find out within seconds of a blood test whether a patient was at risk of acute kidney injury. This made it possible to treat the patients who needed the most urgent care immediately, instead of waiting for results to come back from the lab.8
While IBM¡¯s Watson and Google¡¯s DeepMind could help physicians make better decisions and save lives, another artificial intelligence system could save costs. Praxis Concept Processing is an AI-enabled software program that captures what a doctor says or writes, and then matches the patient¡¯s condition to the most recent similar case the physician has encountered.9
Some patients will have symptoms that are identical to those of previous patients. In that situation, according to the Praxis website, ¡°If the closest encounter is identical to your present one, you are done! Praxis [Electronic Medical Records] will generate the new encounter instantly in the same way as you did it before. It will also print or fax your prescriptions, generate instructions to your patients, instructions to your staff, admitting orders to the hospital, procedure reports, work or school excuses, and every other document you require, all effortless and instantaneous. And, it will optimally code the visit and create a super-bill. All this happens in the blink of an eye!
¡°If the encounter is similar but not identical, you simply modify the differences from the closest case using handwriting recognition, voice recognition, or keyboard. The beauty of Concept Processing, however, is that it memorizes all your changes. So, when your next encounter falls between two similar cases, your editing is cut in half, and then by a quarter for the next case, and then by an eighth, etc. In fact, the more you use the Concept Processor, the faster and smarter it becomes. In time, Praxis becomes you?a true mirror of your mind.¡±
Theoretically, then, physicians can provide quick solutions to routine cases, freeing up more time to spend with patients with unique problems that need more of the doctor¡¯s attention.
Meanwhile, Apple, Dell, Hewlett-Packard, and Hitachi are also reportedly working on developing artificial intelligence solutions for the healthcare industry. By 2021, the use of AI in healthcare is projected to jump to $6 billion, from $600 million as recently as 2014, according to research by Frost & Sullivan.
That includes the increasing penetration of AI into the drug discovery process. Artificial intelligence can evaluate every possible combination of compounds simultaneously to find new treatments that would elude human researchers tediously experimenting with one combination at a time.
For example, pharmaceutical startup Berg Health recently announced that a cancer treatment will reach the market after seven years in development - half of the fourteen years that are typical for new drugs - due to the use of AI in testing.10
The company used AI to compare fourteen trillion data points within tissue samples from patients with cancers of the pancreas, bladder, and brain to samples from people without cancer. The system identified the differences between the biological profiles and chose patients who would get the best results from taking the drug.
According to Berg co-founder Niven Narain, a clinical oncologist, bringing a new drug to market typically costs $2.6 billion and takes twelve to fourteen years; using AI, both the time and cost are cut by at least 50 percent. As Narain explained, ¡°There¡¯s a lot of trial and error in the old model, so a lot of those costs are due to the failure of really expensive clinical trials. We¡¯re able to be more predictive and effective... and that¡¯s going to cut hundreds of millions of dollars off the cost.¡±
To further eliminate wasteful healthcare spending, a company called Hindsait is launching an AI platform that allows doctors and insurance companies to flag prescribed treatments that are redundant or not medically necessary.11
In the emerging field of precision medicine, AI unleashes the potential of technology to deliver tailored solutions to each patient based on his or her unique medical history, lifestyle, and genomic make-up, rather than just the patient¡¯s disease. When dealing with such data-intensive decisions, AI is proving far superior to humans.
How should companies respond to this opportunity? According to Anil Jain, M.D., vice president of IBM¡¯s Watson Health division, leaders of healthcare firms should ask themselves the following questions:12
- ¡°How can we aggregate all the data input generated within our four walls to do right for our patients?¡±
- ¡°How can we draw insights from the data to take actionable steps to improve quality of care?¡±
- ¡°How can we serve up the data to make each and every member of the care team operate at the highest level?¡±
- ¡°How can we do all this cost-effectively?¡±
Jain concludes that companies that fail to embrace AI will end up on the losing side of the phenomenon that Austrian economist Joseph Schumpeter called ¡°creative destruction.¡± As Jain puts it, ¡°The incentives to buy high-functioning technology systems will be the same as for other businesses in competitive markets: Namely, the price for not doing so will be swift Schumpeterian death in the marketplace.¡±
Going forward, we foresee the following developments emerging from this crucial trend:
First, artificial intelligence will provide the solution to the looming shortage of physicians.
Within a few years, AI-based expert systems in the hands of masters-level ¡°physician¡¯s assistants¡± will be able to prescribe treatments for 90 percent of ailments with greater efficacy than today¡¯s best doctors. This will free up the time of the limited supply of physicians to treat the remaining 10 percent of patients. According to Robert Wachter MD, chair of the department of medicine at the University of California, San Francisco, and author of The Digital Doctor: Hope, Hype and Harm at the Dawn of Medicine¡¯s Computer Age, many patient visits currently handled by doctors will be routed to a new type of healthcare professional who will work under the supervision of a physician to ¡°understand the data, put it in context, and act on it.¡±13 According to projections from the Bureau of Labor Statistics, the demand for so-called health information technicians will rise by 15 percent from 2014 to 2024, which is significantly greater than the overall estimated growth in the labor market over that period.
Second, many small hospitals and independent physician practices will go out of business when AI transforms healthcare.
They will fail to keep up with bigger medical practices that have the funds and the foresight to invest in AI technology, and the market will punish the laggards for their higher costs, less accurate diagnoses, and longer waiting times for everything from patient appointments to medical test results. The skilled professionals and capital assets of marginal players will be absorbed by the winners.
Third, AI will provide an affordable way to address the rising costs of elder care as the U.S. population rapidly ages.
A very promising option is to create AI-based living environments based on the Internet of Things along with targeted use of service robotics. AI could enable a small team of human caregivers to cost-effectively ensure the well-being of a large population of older people living independently. Humans would only intervene when the technology identified a problem.
Fourth, AI will dramatically accelerate the process of drug discovery by managing and tracking fully automated testing.
For instance, thousands of compounds can be tested on identical cells and the results correlated with the genomics of those cells. This will not only accelerate the discovery of optimized treatments for cancers, but lead to cures for other chronic maladies like Alzheimer¡¯s, Parkinson¡¯s, and heart disease.
References
1. For information about the rapidly increasing cost of healthcare, visit the Centers for Medicare & Medicaid Services website at:
2. For additional information about excessive healthcare costs, visit the Aetna website at:
3. Wired, February 11, 2013, ¡°IBM¡¯s Watson Is Better at Diagnosing Cancer than Human Doctors,¡± by Ian Steadman. ¨Ï 2013 Conde Nast. All rights reserved.
http://www.wired.co.uk/article/ibm-watson-medical-doctor
4. Forbes, August 12, 2015, ¡°IBM Acquires Merge Health to Supplement Watson Healthcare,¡± by Trefis Team. ¨Ï 2015 Forbes Media LLC. All rights reserved
5. BigThink, May 10, 2016, ¡°How Artificial Intelligence Will Revolutionize Healthcare,¡± by Philip Perry. ¨Ï 2016 The Big Think Inc. All rights reserved.
http://bigthink.com/philip-perry/how-artificial-intelligence-will-revolutionize-healthcare
6. HealthcareDive, March 10, 2016, ¡°5 Ways Artificial Intelligence is Changing the Face of Healthcare,¡± by Meg Bryant. ¨Ï 2016 Industry Dive. All rights reserved.
7. Bloomberg, February 24, 2016, ¡°Google¡¯s DeepMind Forms Health Unit to Build Medical Software,¡± by Jack Clark. ¨Ï 2016 Bloomberg L.P. All rights reserved.
8. iBid.
9. ExtremeTech, May 20, 2016, ¡°The Next Major Advance in Medicine Will Be the Use of AI,¡± by Jessica Hall. ¨Ï 2016 Ziff Davis, LLC. PCMag Digital Group. All rights reserved.
http://www.extremetech.com/extreme/228830-the-next-major-advance-in-medicine-will-be-the-use-of-ai
10. The Telegraph, October 9, 2015, ¡°Cancer Drug Development Time Halved Thanks to Artificial Intelligence,¡± by Ian Douglas. ¨Ï 2015 Telegraph Media Group Limited. All rights reserved.
11. HealthcareDive, March 10, 2016, ¡°5 Ways Artificial Intelligence is Changing the Face of Healthcare,¡± by Meg Bryant. ¨Ï 2016 Industry Dive. All rights reserved.
12. Hospitals & Health Networks, September 28, 2015, ¡°12 Ways Artificial Intelligence Will Transform Health Care,¡± by David Ollier Weber. ¨Ï 2015 Health Forum. All rights reserved.
http://www.hhnmag.com/articles/6561-ways-artificial-intelligence-will-transform-health-care
13. The Digital Doctor: Hope, Hype and Harm at the Dawn of Medicine¡¯s Computer Age, by Robert Wachter MD is published by McGraw-Hill Education. ¨Ï 2015 Robert M. Wachter. All rights reserved.