¹«¾îÀÇ ¹ýÄ¢, »ì¾Ò³ª Á×¾ú³ª? ¾Æ´Ï¸é ºÎÈ°Çß³ª?

åǥÁö

ÁýÀû ȸ·Î³» Æ®·£Áö½ºÅÍ ¹Ðµµ°¡ ´õ ³ô¾ÆÁüÀ¸·Î¼­ ÀüÀÚ Á¦Ç°ÀÇ ºñ¿ë ´ëºñ ¼º´ÉÀº Áö¼ÓÀûÀ¸·Î Çâ»óµÇ¾î ¿Ô´Ù. ÀÎÅÚÀÇ °íµç ¹«¾î´Â À̸¦ Á¤¸®ÇÏ¿© ¹«¾îÀÇ ¹ýÄ¢À» ¾ð±ÞÇß´Ù. Æò¹æ ¹Ð¸®¹ÌÅÍ ´ç Æ®·£Áö½ºÅÍÀÇ ¼ö°¡ ¾à 2³â¸¶´Ù µÎ ¹è·Î Áõ°¡ÇÑ´Ù´Â °Í! ±×·¯³ª ÇöÀç¿¡µµ ÀÌ ¹ýÄ¢Àº À¯È¿ÇÑ°¡?





ÁýÀû ȸ·Î³» Æ®·£Áö½ºÅÍ ¹Ðµµ°¡ ´õ ³ô¾ÆÁüÀ¸·Î¼­ ÀüÀÚ Á¦Ç°ÀÇ ºñ¿ë ´ëºñ ¼º´ÉÀº Áö¼ÓÀûÀ¸·Î Çâ»óµÇ¾î ¿Ô´Ù. ÀÎÅÚÀÇ °íµç ¹«¾î´Â À̸¦ Á¤¸®ÇÏ¿© ¹«¾îÀÇ ¹ýÄ¢À» ¾ð±ÞÇß´Ù. Æò¹æ ¹Ð¸®¹ÌÅÍ ´ç Æ®·£Áö½ºÅÍÀÇ ¼ö°¡ ¾à 2³â¸¶´Ù µÎ ¹è·Î Áõ°¡ÇÑ´Ù´Â °Í! ±×·¯³ª ÇöÀç¿¡µµ ÀÌ ¹ýÄ¢Àº À¯È¿ÇÑ°¡?


±â¼ú°æÁ¦ Çõ¸íÀ» µÞ¹ÞħÇÏ´Â ÇʼöÀûÀÎ Åä´ë¿¡´Â ¹«¾îÀÇ ¹ýÄ¢ÀÌ ÀÖ´Ù. ¾Ë´Ù½ÃÇÇ, ¹«¾îÀÇ ¹ýÄ¢Àº ÁýÀû ȸ·Î³» Æ®·£Áö½ºÅÍ ¹Ðµµ°¡ ´õ ³ô¾ÆÁüÀ¸·Î¼­ ÀüÀÚ Á¦Ç°ÀÇ ºñ¿ë ´ëºñ ¼º´ÉÀÌ Áö¼ÓÀûÀ¸·Î Çâ»óµÇ´Â °ÍÀ» ÀǹÌÇÑ´Ù.


ÀÌ ³î¶ó¿î °æÁ¦ Çö»óÀº Àû¾îµµ 60³â µ¿¾È ÁøÇàµÇ¾î ¿Ô´Ù. ¹«¾îÀÇ ¹ýÄ¢Àº ÀÎÅÚÀÇ °íµç ¹«¾î(Gordon Moore)°¡ ¡°Æò¹æ ¹Ð¸®¹ÌÅÍ ´ç Æ®·£Áö½ºÅÍÀÇ ¼ö°¡ ¾à 2³â¸¶´Ù µÎ ¹è·Î Áõ°¡Çß¾ú´Ù¡±°í ¹àÈù 1965³â¿¡ óÀ½À¸·Î ¼¼»ó¿¡ ³Î¸® ¾Ë·ÁÁ³´Ù, Áö³­ 50³â µ¿¾È ¹«¾îÀÇ ¹ýÄ¢´ë·Î ÄÄÇ»Æðú ³×Æ®¿öÅ·ÀÇ ºñ¿ëÀº ´õ ³·¾ÆÁ³°í, ¼º´ÉÀº ´õ ³ô°í ¾ÈÁ¤ÀûÀ¸·Î º¯¸ðÇØ¿Ô´Ù.


±×·±µ¥ 2018³â¿¡ ÀϺΠÀü¹®°¡µéÀº ¹«¾îÀÇ ¹ýÄ¢ÀÌ Á×¾ú´Ù°í ÁÖÀåÇÑ´Ù. ¶Ç ´Ù¸¥ »ç¶÷µéÀº ±×·¸Áö ¾Ê°í ±×°ÍÀº ¿©ÀüÈ÷ »ì¾Æ ÀÖ´Ù°í ¸»ÇÏ°í ÀÖ´Ù. ±×¸®°í ¶Ç ´Ù¸¥ »ç¶÷µéÀº ±×°ÍÀÌ »õ·Î¿î ÇüÅ·ΠºÎÈ°Çß´Ù°í ÁÖÀåÇÑ´Ù. ´©°¡ ¿ÇÀº °ÍÀϱî? »ç½Ç Áß½ÉÀ¸·Î »ìÆ캸ÀÚ.


¿ì¸®´Â 5³â Àü 2013³â¿¡ ¹«¾îÀÇ ¹ýÄ¢¿¡ ´ëÇØ ¾ð±ÞÇß´Ù. ±×¸®°í 5³âÀÌ È帥 2018³âÀ» ±âÁØÀ¸·Î À̾߱âÇغ¸ÀÚ. 5³â ÀüÀÇ ¹«¾îÀÇ ¹ýÄ¢°ú ÀÌÈÄ 2018³âÀÇ »óȲ¿¡´Â ¾î¶°ÇÑ Â÷ÀÌÁ¡ÀÌ ÀÖÀ»±î? 5³â µ¿¾È, ¿ì¸®´Â ½ÇÁ¦ÀûÀ¸·Î ÀϾ ÀÏÀ» µÇµ¹¾Æº¸°í °¡´É¼ºÀÖ´Â ¾ÕÀ¸·ÎÀÇ ±Ëµµ¸¦ ÀÌÇØÇØ¾ß ÇÒ °ÍÀÌ´Ù.


µðÁöÅÐ ÄÄÇ»ÆÃÀÌ ¿Á¼ö¼ö¿¡ ¹°À» ÁÖ°í °æÀÛÇÏ´Â °ÍºÎÅÍ ³ú ±í¼÷ÇÑ °÷¿¡¼­ ¾Ï Ãʱâ Áø´ÜÀ» ³»¸®´Â °Í¿¡ À̸£±â±îÁö »ç¶÷ÀÌ ÇÏ´Â °ÅÀÇ ¸ðµç ÀÏÀ» ÁÖµµÇÏ´Â ½Ã´ë¿¡, °æÁ¦ÀÇ ¹Ì·¡¶ó´Â »ç¾Èº¸´Ù ´õ Áß¿äÇÑ °ÍÀº ¾øÀ» °ÍÀÌ´Ù. ¿À´Ã³¯ ²÷ÀÓ¾øÀÌ Áõ°¡ÇÏ´Â ÄÄÇ»Æà ¼º´É°ú ±×¿¡ ´ëÇÑ ºñ¿ë Àý°¨Àº ¸ðµç °ÍµéÀÌ ¸ðµç °÷¿¡ ¿¬°áµÇ´Â ±â°è Áö¼ºÀ» ±¸ÇöµÇ°Ô ¸¸µé¾ú´Ù. ±×·¡¼­ ÀÌ Çö»óÀÇ °©ÀÛ½º·¯¿î °á¸»Àº Àΰ£ Áøº¸ÀÇ ±ËÀûÀ» µ¹ÀÌų ¼ö ¾øÀ» ¼öÁØÀ¸·Î º¯È­½Ãų °ÍÀ̶ó´Â µ¥ ÀÖ´Ù.


´ÙÇàÈ÷ ÀÎÅÚÀÇ ¸®´õµéÀÌ ¿Ç´Ù¸é, ±× º¯È­´Â ¾î´À ¼ø°£ °ð¹Ù·Î ÀϾÁö ¾ÊÀ» °ÍÀÌ´Ù. ±×µéÀº ÀÌ·¸°Ô ¸»ÇÑ´Ù.


¡°¿ì¸®´Â ´ÙÀ½ 5³â µ¿¾È [¹«¾îÀÇ ¹ýÄ¢À¸·Î] ¹®Á¦¸¦ ¾î¶»°Ô ÇØ°áÇÒ °ÍÀΰ¡¿¡ ´ëÇØ »ó´çÇÑ ÅëÂû·ÂÀ» °®°í ÀÖ½À´Ï´Ù.¡±


±×µéÀº ¶ÇÇÑ 5³â µ¿¾È ¼ö¸¹Àº °æ·Î ã±â¸¦ ÇÏ°í ÀÖ´Ù. ¿À´Ã³¯ °á·ÐÀº ÀÌ·¸´Ù.


¡°ÀÎÅÚ¿¡ ÀÖ¾î ¹«¾îÀÇ ¹ýÄ¢Àº ¿©ÀüÈ÷ Àß »ì¾ÆÀÖ½À´Ï´Ù.¡±


±×·¸´Ù¸é ¹«¾îÀÇ ¹ýÄ¢ÀÌ ¿ÏÀüÈ÷ Á×Áö´Â ¾Ê¾ÒÁö¸¸ °ú°Å¿Í ´Þ¸® »ý»ýÇÏÁø ¾Ê´Ù°í ÁÖÀåÇϸ鼭 ¸¹Àº ´Ù¸¥ Àü¹®°¡µéÀº ¿Ö ÀÌ·¯ÇÑ ÀÎÅÚÀÇ ÁÖÀå¿¡ µµÀüÇÏ´Â °ÍÀϱî? ´äÀº Á¤ÀÇ¿¡ ÀÖ´Ù.


¡°1Æò¹æ ¹Ð¸®¹ÌÅÍ ´ç Æ®·£Áö½ºÅÍÀÇ ¼ö°¡ ´ë·« 2³â¸¶´Ù 2¹è·Î Áõ°¡µÈ´Ù¡±´Â 1965³â ¹«¾îÀÇ °üÂûÀ» ¹®ÀÚ ±×´ë·Î Çؼ®Çغ¸ÀÚ. 1¹Ð¸®¹ÌÅÍÀÇ ½Ç¸®ÄÜ À§¿¡ ´õ ¸¹Àº Æ®·£Áö½ºÅ͸¦ ÆÐÅ·ÇÒ ¼ö ÀÖ´Â ¿ª·®ÀÇ ´ëºÎºÐÀº °¢ ĨÀÇ Å©±â¸¦ ´õ ÀÛ°Ô ¸¸µå´Â °ÍÀ» Æ÷ÇÔÇÑ´Ù. ¿¹¸¦ µé¾î, 65³ª³ë¹ÌÅÍ(nm)¿¡¼­ 45³ª³ë¹ÌÅÍ·Î À̵¿ÇÑ´Ù´Â °ÍÀº ¿£Áö´Ï¾îµé·Î ÇÏ¿©±Ý 1¹Ð¸®¹ÌÅÍ ½Ç¸®ÄÜ À§¿¡ ´ë·« 2¹è ´õ ¸¹Àº Æ®·£Áö½ºÅ͸¦ ÆÐÅ·ÇÒ ¼ö ÀÖ°Ô ÇØÁØ´Ù. °íµç ¹«¾î´Â 1¹Ð¸®¹ÌÅÍÀÇ ½Ç¸®ÄÜ ºñ¿ëÀÌ ÀÏÁ¤ÇÏ°Ô À¯ÁöµÈ´Ù°í °¡Á¤Çߴµ¥, ÀÌ°ÍÀº 2³â¸¶´Ù ÇÑ ¼¼´ë¿¡¼­ ´ÙÀ½ ¼¼´ë·Î À̵¿Çϸ鼭 Æ®·£Áö½ºÅÍ ´ç ºñ¿ëÀÌ °ÅÀÇ Àý¹Ý Á¤µµ°¡ µÈ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù.


±×·¯³ª ÃÖ±Ù ¼ö³â µ¿¾È ÀÌ·¯ÇÑ °¡Á¤¿¡ ÀÖ¾î µÎ °¡Áö ÀÏÀÌ ¹ú¾îÁ³´Ù.


1. ±â¼ú ¼¼´ë°£ ½Ã°£ °£°ÝÀÌ ´õ ±æ¾îÁ³´Ù.
2. ¿Ï¼ºµÈ 1¹Ð¸®¹ÌÅÍ ½Ç¸®ÄÜÀ» »ý»êÇÏ´Â ºñ¿ëÀÌ ´Ã¾î³µ´Ù. °¡Àå ÃֽŠ±â¼úÀ» °³¹ßÇÏ°í ¹èÄ¡Çϴµ¥ µå´Â ºñ¿ëÀÌ ³Ê¹« Å©±â ¶§¹®ÀÌ´Ù.


¾î¶² »ç¶÷µéÀº ¹«¾îÀÇ ¹ýÄ¢ÀÌ Á×¾ú´Ù°í ¸»ÇÑ´Ù. ÀÌÁ¦´Â ´õ ÀÌ»ó 2³â¸¶´Ù ±× Å©±â¸¦ Àý¹ÝÀ¸·Î ÁÙÀÌ´Â °ÍÀÌ ºÒ°¡´ÉÇϱ⠶§¹®ÀÌ´Ù. ±× ¿Ü ´Ù¸¥ ¸ðµç °ÍµéÀÌ µ¿µîÇÏ´Ù¸é, ¡®ºñ¿ë°ú ±â´É¡¯ °³¼±ÀÇ Á¤µµ°¡ ´õ ÀÌ»ó 2³â¸¶´Ù µÎ ¹è°¡ µÇÁö ¾Ê´Â´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù.


±×·¯³ª À̾߱â´Â ¿©±â¿¡¼­ ³¡³ªÁö ¾Ê´Â´Ù. ÇöÀç ±×¸®°í ºÎ»óÇÏ°í ÀÖ´Â 10³ª³ë¹ÌÅÍ¿Í 7³ª³ë¹ÌÅÍ ±â¼ú¿¡ ÀÖ¾î ±× ¹Ðµµ°¡ ´õ ºü¸£°Ô Áõ°¡ÇÏ°í ÀÖ´Ù. À̴ ĨÀÇ Å©±â°¡ ÀÛ¾ÆÁö°í ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. µû¶ó¼­ 22³ª³ë¹ÌÅÍ¿Í 14³ª³ë¹ÌÅÍ, 14³ª³ë¹ÌÅÍ¿Í 10³ª³ë¹ÌÅÍ »çÀÌÀÇ ¼¼´ë À̵¿ÀÇ ½Ã°£ °£°ÝÀÌ ±æ¾îÁö´õ¶óµµ, ÀÎÅÚÀº ¸Å³â ¶È°°ÀÌ °³¼±À» ÀÌ·ç°í ÀÖ´Â °ÍÀÌ´Ù. ½ÇÁ¦·Î ÀÎÅÚÀº 14³ª³ë¹ÌÅÍ·Î À̵¿Çϸ鼭, ±×¸®°í 10³ª³ë¹ÌÅÍ·Î À̵¿Çϸ鼭 ´õ Å« ¹ÐµµÀÇ ÇýÅÃÀ» °¡Á®°¡°í ÀÖ´Ù. º»ÁúÀûÀ¸·Î À̵éÀº ¼¼´ë À̵¿À» ÅëÇØ ´õ Å« Áøº¸¸¦ ÀÌ·ç°í ÀÖÀ¸¸ç, ¿ª»çÀûÀÎ ºñ¿ë ´ëºñ ¼º´É Çâ»ó Æ®·»µå¸¦ °è¼Ó À¯ÁöÇÏ°í ÀÖ´Ù.


ÀÎÅÚÀº ÇÏÀÌÆÛ½ºÄÉÀϸµ(hyperscaling)À̶ó´Â Àü·«À¸·Î À̸¦ ½ÇÇàÇØ¿Ã ¼ö ÀÖ¾ú´Ù. ÀÌ°ÍÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¸î °¡Áö ±âº» ±â¼úÀÌ ÀÖÁö¸¸, ½ÇÁ¦·Î Áß¿äÇÑ °ÍÀº ÀÚ±â Á¤ÇÕÇü ´õºí ÆÐÅÍ´×(SADP,  Self-Aligned Double Patterning) ±â¼ú°ú ÀÚ±â Á¤ÇÕÇü Äõµå ÆÐÅÍ´×(SAQP, Self-Aligned Quad Patterning) ±â¼úÀÌ´Ù.


SADP´Â ´Ù¸¥ ¸»·Î Ãøº® ±â¼úÀ̶ó°íµµ ÇÑ´Ù. Àç·áÀÇ ¾çÂÊ Ãøº® ÆÐÅÏÀ» »ý¼ºÇØ 2°³°¡ ¸ð¿© ÀÖ´Â ¶óÀÎÀ» Çü¼ºÇϱ⠶§¹®ÀÌ´Ù. SAQP´Â ÀÌ·¯ÇÑ SADP¸¦ µÎ ¹ø ¹Ýº¹ÇÏ´Â °ÍÀÌ´Ù.


ÀÌ »õ·Î¿î ±â¼úÀº ¹Ð¸®¹ÌÅÍ´ç ºñ¿ëÀº ³ôÀÌÁö¸¸ ¹Ð¸®¹ÌÅÍ´ç ´õ ¸¹Àº Æ®·£Áö½ºÅÍ ÆÐÅ·À» °¡´ÉÇÏ°Ô ÇÑ´Ù. °á°úÀûÀ¸·Î ¿þÀÌÆÛ¸¦ Á¦Á¶ÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¦°ö ¹Ð¸®¹ÌÅÍ´ç ºñ¿ëÀº »ó½ÂÇÏÁö¸¸ ÀÎÅÚÀº Æ®·£Áö½ºÅ͸¦ ¼öÃà½ÃŲ´Ù. ÀÌ·Î ÀÎÇØ ÀÎÅÚÀº ¸Å¹ø Æ®·£Áö½ºÅÍ ´ç ºñ¿ëÀ» °¨¼Ò½ÃŲ´Ù. °á°úÀûÀ¸·Î Æ®·£Áö½ºÅÍ ´ç ºñ¿ëÀÌ ÃµÃµÈ÷ ´õ Çâ»óµÈ ¼Óµµ·Î ³»·Á°¡°í ÀÖ´Ù. ±×·¡¼­ ÀÎÅÚÀº ¡°¹«¾îÀÇ ¹ýÄ¢Àº »ì¾Æ ÀÖ°í Àß ÀÖ´Ù¡±°í À̾߱âÇÏ´Â °ÍÀÌ´Ù.


¼ÒºñÀÚ¿Í ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ßÀÚ¿¡°Ô ÀÖ¾î, ¿©ÀüÈ÷ Áö¼ÓµÇ´Â ¡®¹«¾îÀÇ ¹ýÄ¢¡¯ÀÇ ÇýÅÃÀº ¹ÝµµÃ¼ »ê¾÷ÀÌ ¼º´ÉÀ» Çâ»ó½ÃÅ°°í, ±â´ÉÀ» Ãß°¡ÇÏ°í, ºñ¿ëÀ» Àý°¨ÇÏ´Â °ÍÀ» µ¿½Ã¿¡ ÀÌ·ê ¼ö ÀÖ´Ù´Â Àǹ̰¡ µÈ´Ù.


ÀÌ·¯ÇÑ »ç½Ç°ú Àü¸ÁÀ» º¼ ¶§, ¿ì¸®´Â ´ÙÀ½°ú °°Àº 5°¡Áö¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ´Ù.


ù°, ÇâÈÄ 10³â µ¿¾È CMOS ÁýÀû ȸ·Î¿¡ ´ëÇÑ ºñÁî´Ï½º°¡ ÀϹÝÈ­µÉ °ÍÀÌ´Ù.


°³º° Å©±â¸¦ ´õ ÀÛ°Ô ¸¸µå´Â °Í ¿Ü¿¡µµ ´ÙÁß ·¹À̾î ĨÀ» Á¦ÀÛÇÏ´Â °Íµµ °¡´ÉÇÏ´Ù. ±×·¯³ª µÎ °æ¿ì ¸ðµÎÀÇ ¹®Á¦´Â ¹æ¿­(heat dissipation)ÀÌ´Ù. ÇâÈÄ 5³âÀº ÁÖ·Î ¿ì¼öÇÑ ½ÇÇà ȤÀº ¼º´ÉÀÇ ¹®Á¦ÀÏ °ÍÀÌ°í, ±× ÀÌÈĺÎÅÍ´Â »õ·Î¿î À庮À» ³Ñ¾î¼­±â À§ÇÑ »ê¾÷ ȤÀº ±â¾÷ÀÇ Ã¢ÀÇ·Â ¹®Á¦°¡ µÉ °ÍÀÌ´Ù.


µÑ°, ÁߴܱâÀûÀ¸·Î ȲÀÇ ¹ýÄ¢(Huang¡¯s Law)À¸·Î ºÒ¸®´Â ¶Ç ´Ù¸¥ Æз¯´ÙÀÓÀÌ ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU, graphic processing unit)ÀÇ ÈûÀ» »ç¿ëÇÒ ¼ö ÀÖ´Â ¼ö¸¹Àº »ó¾÷Àû Àû¿ë¿¡ ÀÖ¾î ´õ Áß¿äÇØÁú ¼öµµ ÀÖ´Ù.


¿£ºñµð¾Æ(Nvidia)ÀÇ CEO Á¨½¼ Ȳ(Jen Hsun Huang)Àº ÃÖ±Ù, ¡®¿À´Ã³¯ ¿£ºñµð¾ÆÀÇ GPU°¡ 5³â Àüº¸´Ù 25¹è ´õ »¡¶óÁ³´Ù¡¯°í ¹àÇû´Ù. ÀÌ°ÍÀº ¾ÆÁÖ Å«ÀÏÀÌ´Ù. ±×µéÀÌ ¹«¾îÀÇ ¹ýÄ¢¿¡ µû¶ó Áøº¸ÇÏ°í ÀÖ¾ú´Ù¸é ±× ¼Óµµ´Â ¾à 10¹è Áõ°¡ÇßÀ» °ÍÀÌ´Ù. ´õ¿í ÀλóÀûÀÎ Á¡Àº ½Å°æ ³×Æ®¿öÅ© ¾Ë·º½º³Ý(AlexNet)À» 1500¸¸ °³ÀÇ »çÁøÀ» ÅëÇØ ÈƷýÃÅ°´Âµ¥ ÇÊ¿äÇÑ ½Ã°£ÀÌ ºÒ°ú 6ÀÏÀ̾ú´Ù´Â Á¡ÀÌ´Ù. ±×°Íµµ 5³â ÀüÀÇ À̾߱â´Ù. ±×·¸´Ù¸é Áö±ÝÀº? 18ºÐÀ̸é ÃæºÐÇÏ´Ù. ¹«·Á 500¹è³ª ´õ »¡¶óÁø °ÍÀÌ´Ù! ¾î¶»°Ô ÀÌ·± ÀÏÀÌ °¡´ÉÇßÀ»±î? ÀÌ·¯ÇÑ ¾îÇø®ÄÉÀ̼ÇÀÇ ±â°èµéÀº ´Ù¾çÇÑ ºÐ¾ßÀÇ ¼±µÎµéÀÌ Áøº¸ÇÒ ¶§ ±×µé·ÎºÎÅÍ µ¿½Ã¿¡ ÇýÅÃÀ» ¼ö·É¹Þ±â ¶§¹®ÀÌ´Ù. °ÇÃà, ÀÎÅÍÄ¿³ØÆ®, ¸Þ¸ð¸® ±â¼ú, ¾Ë°í¸®Áò µî°ú °°Àº ºÐ¾ß°¡ ±×°ÍÀÌ´Ù. ÀÌ·¯ÇÑ Çõ½ÅÀº Àü ºÐ¾ß¸¦ ¾Æ¿ì¸¥´Ù.


¼Â°, ¼ÒÀ§ ¡®´º·Î¸ðÇÈ(Neuromorphic, ³ú ½Å°æ ¸ð¹æ)¡¯ ĨÀÌ ÀΰøÁö´ÉÀÇ »ó¾÷È­¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀÌ´Ù.


2020³â´ëÀÇ °¡Àå Å« »ó¾÷Àû ±âȸ´Â ÀΰøÁö´É¿¡ ÀÇÇØ ÁÖµµµÉ °¡´É¼ºÀÌ ÀÖÀ¸¸ç, ´º·Î¸ðÇÈ Ä¨ÀÌ Å« ¿ªÇÒÀ» ÇÒ °ÍÀÌ´Ù. ÀÎÅÚÀÇ °úÇÐÀÚ Âû½º ¾î°Å½ºÆ¾(Charles Augustine)ÀÇ ¿¬±¸ º¸°í¼­´Â ´º·Î¸ðÇÈ Ä¨Àº ÀÎÁö ÄÄÇ»ÆÃ, ÀûÀÀÇü Àΰø Áö´É, °¨Áö µ¥ÀÌÅÍ, ¿¬»ó±â¾ïÀåÄ¡(associate memory)¿Í °°Àº ÀΰøÁö´É ÀÛ¾÷À» ó¸®ÇÒ ¼ö ÀÖÀ» °ÍÀ̶ó°í ¿¹ÃøÇÑ´Ù. ÀÌ Ä¨Àº ¶ÇÇÑ ÃÖ°íÀÇ CMOS ĨÀÌ »ç¿ëÇÏ´Â °Íº¸´Ù 15¡­300¹è³ª ´õ ÀûÀº ¿¡³ÊÁö¸¦ »ç¿ëÇÑ´Ù.


ÀÌ°ÍÀº ¾ÆÁÖ Àǹ̽ÉÀåÇѵ¥, ½Ã¸®(Siri)¿Í ¾Ë·º»ç(Alexa)¿Í °°Àº ¿À´Ã³¯ÀÇ ÀΰøÁö´É ¼­ºñ½ºµéÀÌ À½¼º Áú¹®À̳ª ¸í·É¿¡ ÀÀ´äÇÏ´Â °Í°ú °°Àº ÀÛ¾÷À» ¼öÇàÇϱâ À§ÇØ Å¬¶ó¿ìµå ±â¹Ý ÄÄÇ»Æÿ¡ ÀÇÁ¸Çϱ⠶§¹®ÀÌ´Ù. ½º¸¶Æ®ÆùÀº ÀΰøÁö´É¿¡ ÇÊ¿äÇÑ ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ´Â ÄÄÇ»Æà ¼º´ÉÀ» º¸À¯ÇÏÁö ¾ÊÀº ĨÀ¸·Î °¡µ¿ÇÑ´Ù. µû¶ó¼­ ½º¸¶Æ®Æù¿¡ ±×·¯ÇÑ ¼º´ÉÀÌ Àִ ĨÀÌ »ç¿ëµÉ °æ¿ì, ¹èÅ͸®´Â ¹Ù·Î ¹æÀüµÇ¾î °ÍÀÌ´Ù. µû¶ó¼­ ÃÊÀúÀü·Â ´º·Î¸ðÇÈ Ä¨Àº ÇâÈÄ ½º¸¶Æ®Æù¿¡µµ Àû¿ëµÉ ¼ö ÀÖÀ» °ÍÀÌ´Ù. ´ç¿¬È÷ ½º¸¶Æ®ÆùÀÇ ¼º´ÉÀº Áö±Ý°ú ºñ±³°¡ µÇÁö ¾ÊÀ» °ÍÀÌ´Ù.


³Ý°, ±¤ÇÐ Å׶óÇ츣Ã÷(teraherts) ĨÀÌ ÃÊ°í¼Ó ±¤Åë½Å ÄÄÇ»Æà ±â¼ú°ú CMOS¸¦ ÅëÇÕÇÒ ¼ö ÀÖµµ·Ï ÇØÁÙ °ÍÀÌ´Ù.


ÃÖ±Ù ¡¸·¹ÀÌÀú ¾Ø Æ÷Åä´Ð½º ¸®ºä(Laser and Photonics Review)¡¹¿¡ °ÔÀçµÈ ¹Ù¿Í °°ÀÌ, È÷ºê¸®  ´ëÇб³(Hebrew University)ÀÇ ³ª³ë ¿ÉÅä ±×·ì(Nano-Opto Group)Àº ±¤Åë½ÅÀÇ ¼Óµµ¿Í ±âÁ¸ ÀüÀÚ Á¦Ç°ÀÇ ¾ÈÁ¤¼º, Á¦Á¶ È®À强À» ÅëÇÕÇÏ´Â ±¤ÇÐ ±â¼úÀ» °³¹ßÇß´Ù. ±¤Åë½ÅÀº ÃÊ°í¼ÓÀÌÁö¸¸, ¸¶ÀÌÅ©·Î Ĩ Á¶°Ç¿¡ ¾ÈÁ¤¼ºÀÌ ¶³¾îÁö°í, ´ë·®À¸·Î º¹Á¦Çϱ⵵ Èûµé´Ù. ÀÌÁ¦ ±Ý¼Ó-»êÈ­-ÁúÈ­¹°-»êÈ­ ½Ç¸®ÄÜ(Metal-Oxide-Nitride-Oxide-Silicon, ¶Ç´Â MONOS) ±¸Á¶¸¦ »ç¿ëÇÏ¿© È÷ºê¸® ´ëÇÐ ÆÀÀº ¸¶ÀÌÅ©·Î Ĩ¿¡ Ç÷¡½Ã ¸Þ¸ð¸® ±â¼úÀ» È°¿ëÇÏ´Â »õ·Î¿î ÁýÀû ȸ·Î¸¦ °³¹ßÇß´Ù. °³¹ßÀÌ ¿Ï·áµÇ±â¸¸ Çϸé, ÀÌ ±â¼úÀº Ç¥ÁØ 8¡­16 ±â°¡Ç츣Ã÷ ÄÄÇ»Å͸¦ 100¹è ´õ ºü¸£°Ô ÀÛµ¿½ÃÅ°°í, »ó¿ë Å׶óÇ츣Ã÷ ĨÀÇ ½Ã´ë¿¡ ´õ ±ÙÁ¢½ÃÅ°°Ô µÉ °ÍÀÌ´Ù.


´Ù¼¸Â°, ¹«¾îÀÇ ¹ýÄ¢ÀÌ 2025¡­2035³â »çÀÌ¿¡ ½É°¢ÇÑ º´¸ñ Çö»óÀ» °Þ°Ô µÉ ¶§±îÁö ±×·¡ÇÉ(Graphene) ±â¹ÝÀÇ ·ÎÁ÷ÀÌ »ó¾÷¿ë ÀüÀÚÁ¦Ç°¿¡ ÀÖ¾î Å« ¿ªÇÒÀ» Çϱ⠽ÃÀÛÇÒ °ÍÀÌ´Ù.


2013³âºÎÅÍ ¿¬±¸ÀÚµéÀº ±×·¡ÇÉ ³ª³ë½ÃÆ®(nanosheets, 10¾ïºÐÀÇ 1½ÃÆ®)¸¦ ÀüÀÚ ±â¼ú·Î Àüȯ½ÃÅ°´Âµ¥ Å« ÁøÀüÀ» ÀÌ·ç¾ú´Ù. 2030³â±îÁö ¼ö¹éÀÇ ±â°¡Ç츣Ã÷·Î ÀÛµ¿ÇÏ´Â ºñ¿ë È¿À²ÀûÀÎ ±×·¡ÇÉ ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼­¸¦ Á¦ÀÛÇÏ´Â °ÍÀÌ °¡´ÉÇÒ °ÍÀÌ´Ù. ±×¶§, CMOS´Â ±×·¡ÇÉ¿¡°Ô ÀÚ¸®¸¦ ³Ñ°ÜÁֱ⠽ÃÀÛÇÒ °ÍÀÌ°í, ¹«¾îÀÇ ¹ýÄ¢Àº ¸¶Ä§³» ³¡³ª°Ô µÉ °ÍÀÌ´Ù. ±×¸®°í ¿ì¸®´Â »õ·Ó°í ¿ª½Ã³ª Èï¹Ì·Î¿î ¼º´É °î¼±À¸·Î ÁøÀϺ¸ÇÏ°Ô µÉ °ÍÀÌ´Ù.


* *


References List :


1. Meir Grajower, Noa Mazurski, Joseph Shappir, Uriel Levy. Laser & Photonics Reviews, 2018; 1700190. Non-Volatile Silicon Photonics Using Nanoscale Flash Memory Technology.
https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201700190


2. Steven Vannelli, CFA. Knowledge Leaders Capital Blog, April 7, 2017. Moore¡¯s Law: Knowl- edge Economy Firmly On Track.
http://go.gavekalcapital.com/l/109202/2017-04-05/4d6d-nd/109202/37625/Moore_s_Law_and_the_Knowledge_Effect.pdf


3. Dave James. Pcgamesn.com, January 1, 2018. Intel, Nvidia, Please Shut Up About Moore¡¯s Law. It¡¯s Not Dead Yet, or Interesting... or Even a Law.
https://www.pcgamesn.com/intel-moores-law-no-more


4. Tom Simonite. MIT Technology Review, May 30, 2017. How AI Can Keep Accelerating After Moore¡¯s Law.
https://www.technologyreview.com/s/607917/how-ai-can-keep-accelerating-after-moores-law/





Moore¡¯s Law: Alive? Dead? Or resurrected?

The indispensable foundation underpinning the Fifth Techno-Economic Revolution is Moore¡¯s Law, the relentless cost-performance improvement in electronics enabled by the ever-increasing density of transistors in integrated circuits.


This amazing economic phenomenon has been going on for at least 60 years. It was first widely-recognized back in 1965, when Intel¡¯s Gordon Moore observed that ¡°the number of transistors per square millimeter was doubling approximately every two years.¡± For over 5 decades that has translated into lower costs, higher performance and more reliable computing and networking.    


In 2018, some experts argue that Moore¡¯s law is dead. Other say it¡¯s alive and well. And others claim it has been resurrected in a new form. Who¡¯s right?


Consider the facts.


We last examined Moore¡¯s Law, in 2013, as we were writing Ride the Wave. Now, five years later, we¡¯re looking back at what actually transpired and attempting to understand its likely forward trajectory.
In an era when digital computing drives nearly everything we do, from plowing and watering fields of corn to diagnosing early-stage cancer deep inside the brain, no issue is more important for our economic future. Today, the ever-falling cost of ever-increasing computing power lets us embed connected ¡°machine intelligence¡± into nearly everything, everywhere. So, the sudden end of this phenomenon would irrevocably change the trajectory of human progress.


Fortunately, if the leaders at Intel are right, that won¡¯t happen anytime soon. They say, ¡°We have good insight into how we will solve the problems [with Moore¡¯s Law] during the next five years.¡± They also do a lot of path-finding for the five years beyond that point. The bottom line: as of today, ¡°Moore¡¯s Law is alive and well, for Intel.¡±
 
So, why do a lots of other experts challenge Intel¡¯s claim, insisting that Moore¡¯s Law is sick, if not totally dead. The answer lies in definitions.


Consider the literal wording of Moore¡¯s 1965 observation, ¡°the number of transistors per square millimeter doubles approximately every two years.¡± Much of the ability to pack more transistors onto a millimeter of silicon involves making individual feature on the chip smaller; for instance, going from 65 nm features to 45 nm features permitted engineers to pack roughly twice as many transistors onto a single millimeter of silicon. Gordon Moore assumed that the cost of a millimeter of silicon would remain constant in real dollars meaning that the cost per transistor would be half as much as you move from one generation to the next about every two years.


But two things have happened to those assumptions in recent years:


1. The time intervals between generations of technology have become longer; and
2. The cost of producing a finished millimeter of silicon has increased because the newest technology is so expensive to develop and deploy.


Some people say Moore¡¯s law is dead because it¡¯s no longer possible to cut the size of features in half every two years. All other things being equal, that implies that the amount of improvement in cost and functionality would no longer be doubling every two years.


However, there¡¯s more to the story. For current and emerging 10-nanometer and 7-nanometer technology, the density is actually increasing faster that implied by the shrinking size of chip features. So, Intel is getting the same year-on-year improvement, even as the time intervals between 22-nanometer and 14-nanometer as well as between 14-nanometer and 10-nanometer, have become longer. In fact, Intel is a larger-than-normal density benefit as they went from 14-nanometer and as they go to 10-nanometer. In essence, they¡¯re taking bigger steps from generation-to-generation, which is enabling them to stay on the historical cost-performance trend line.
 
Intel has been able to do that because of a strategy called hyperscaling. There are several underlying technologies that enable this, but the really important ones are called Self-Aligned Double Patterning, and Self-Aligned Quad Patterning.
 
This new technology raises the cost per millimeter but also permits more transistors per millimeter. As a result, in every generation cost per square millimeter to manufacture wafers goes up, but Intel shrinks the transistors. And at the end of the day, they get a declining cost per transistor. As a result, their cost per transistor is coming down at a slightly better rate than the historical trend. That is why they say, ¡°Moore¡¯s Law is alive and well.¡±


For consumers and application developers the benefit of continuing Moore¡¯s Law is that the semiconductor industry can improve performance, add features, and reduce costs, all at the same time.
Given this trend, we offer the following forecasts for your consideration.


First, it will be business-as-usual for CMOS integrated circuits over the coming decade.


In addition to making individual features smaller, it¡¯s also possible to produce multi-layer chips. But the problem in both cases is heat dissipation. The next five years is largely a matter of good execution. Beyond that point, we¡¯ll have we¡¯ll have to rely on the ingenuity of the industry to overcome significant barriers.


Second, in the medium term, another paradigm called Huang¡¯s law may become more important for many commercial applications that can harness the power of GPUs.


CEO Jen-Hsun Huang recently pointed out that today, Nvidia¡¯s GPUs are 25 times faster than they were just five years ago. That¡¯s big; if they were advancing according to Moore¡¯s law, they would only have increased their speed by a factor of ten. Even more impressive, the time required to train AlexNet, a neural network trained on 15 million images took six days, five years ago; now it takes just 18 minutes. That¡¯s 500 times faster! Why? Because, these machines in these applications benefit from simultaneous advances on multiple fronts: architecture, interconnects, memory technology, algorithms, and more. The innovation is across the entire stack.


Third, so-called neuromorphic chips will paly an important role in commercializing artificial intelligence.


The biggest commercial opportunities of the 2020s are likely to be driven by AI, and Neuromorphic chips will play a big role there. A research paper by Intel scientist Charles Augustine predicts that neuromorphic chips will be able to handle artificial intelligence tasks such as cognitive computing, adaptive artificial intelligence, sensing data, and associate memory.  They will also use 15-to-300 times less energy than the best CMOS chips use. That¡¯s significant because today¡¯s AI services, such as Siri and Alexa, depend on cloud-based computing in order to perform such feats as responding to a spoken question or command.  Smartphones run on chips that simply don¡¯t have the computing power to use the algorithms needed for AI, and even if they did, they would instantly drain the phone¡¯s battery.


Fourth optical terahertz chips will enable CMOS to integrate with super-fast photonic computing technology.


As documented recently in Laser and Photonics Review, Hebrew University¡¯s Nano-Opto Group has created an optic technology that integrates the speed of optic communications with the reliability and manufacturing scalability of conventional electronics. Optic communications are super-fast but in microchips they become unreliable and difficult to replicate in large quantities. Now, by using a Metal-Oxide-Nitride-Oxide-Silicon (or MONOS) structure, the Hebrew University team has come up with a new integrated circuit that uses flash memory technology in microchips. Once fully developed, this technology could enable standard 8-to-16 gigahertz computers to run 100 times faster and bring us closer to a commercial terahertz chip. And,


Fifth, by the time Moore¡¯s Law hits a serious bottleneck between 2025 and 2035, Graphene-based logic will begin to play a huge role in commercial electronics.


Since 2013, researchers have made a great deal of progress in terms of transforming graphene nanosheets into an electronic technology. By 2030, it will be possible to manufacture cost-effective graphene microprocessors operating at hundreds of gigahertz. At that point, CMOS will begin to yield share to graphene. Moore¡¯s law will finally be finished. And, we¡¯ll have jumped onto a new and equally exciting performance curve.


References


1. Meir Grajower, Noa Mazurski, Joseph Shappir, Uriel Levy. Laser & Photonics Reviews, 2018; 1700190. Non-Volatile Silicon Photonics Using Nanoscale Flash Memory Technology.

https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201700190


2. Steven Vannelli, CFA. Knowledge Leaders Capital Blog, April 7, 2017. Moore¡¯s Law: Knowl- edge Economy Firmly On Track.

http://go.gavekalcapital.com/l/109202/2017-04-05/4d6d-nd/109202/37625/Moore_s_Law_and_the_Knowledge_Effect.pdf


3. Dave James. Pcgamesn.com, January 1, 2018. Intel, Nvidia, Please Shut Up About Moore¡¯s Law. It¡¯s Not Dead Yet, or Interesting... or Even a Law.

https://www.pcgamesn.com/intel-moores-law-no-more


4. Tom Simonite. MIT Technology Review, May 30, 2017. How AI Can Keep Accelerating After Moore¡¯s Law.

https://www.technologyreview.com/s/607917/how-ai-can-keep-accelerating-after-moores-law/





ÀÌÀü

¸ñ·Ï