ÀÏÀÇ ¹Ì·¡¸¦ ÀçÁ¤ÀÇÇÏ´Â Àΰ£-ÄÄÇ»ÅÍ ½´ÆÛ¸¶Àεå

åǥÁö

MIT Å丶½º ¸»·Ð ±³¼ö´Â ¡°»ç½Ç»ó ¿À´Ã³¯ÀÇ ¸ðµç Àΰ£ÀÇ ¾÷ÀûµéÀÌ °¢ °³ÀÎÀÌ ¾Æ´Ñ Àüü Àΰ£ Áý´Ü¿¡ ÀÇÇØ ´Þ¼ºµÇ°í ÀÖ´Ù.¡±°í ¸»Çß´Ù. ½º¸¶Æ® ±â¼úµéÀÌ ÀüÅëÀûÀÎ Àΰ£Àû ÇÁ·Î¼¼½º¿¡ ÅëÇյǸ鼭, ÀÌÀü¿¡´Â º¼ ¼ö ¾ø¾ú´ø °­·ÂÇÑ ÇüÅÂÀÇ ÄÝ·¹º¸·¹À̼ÇÀÌ ºÎ»óÇÏ°í ÀÖ´Ù´Â Àǹ̴Ù. ÀÌ·¯ÇÑ ÄÝ·¹º¸·¹À̼ÇÀÇ º»ÁúÀº ¹«¾ùÀΰ¡? Àΰ£ÀÇ ÀÏÀÚ¸®¿¡ ¹ÌÄ¥ ¿µÇâÀº? ÀÌ·¯ÇÑ ÄÝ·¹º¸·¹À̼ÇÀÌ Àΰ£À» À§ÇÑ ÃÖ´ëÄ¡ÀÇ °¡Ä¡¸¦ âÃâÇÒ ¼ö ÀÖÀ»±î?





MIT Å丶½º ¸»·Ð ±³¼ö´Â ¡°»ç½Ç»ó ¿À´Ã³¯ÀÇ ¸ðµç Àΰ£ÀÇ ¾÷ÀûµéÀÌ °¢ °³ÀÎÀÌ ¾Æ´Ñ Àüü Àΰ£ Áý´Ü¿¡ ÀÇÇØ ´Þ¼ºµÇ°í ÀÖ´Ù.¡±°í ¸»Çß´Ù. ½º¸¶Æ® ±â¼úµéÀÌ ÀüÅëÀûÀÎ Àΰ£Àû ÇÁ·Î¼¼½º¿¡ ÅëÇյǸ鼭, ÀÌÀü¿¡´Â º¼ ¼ö ¾ø¾ú´ø °­·ÂÇÑ ÇüÅÂÀÇ ÄÝ·¹º¸·¹À̼ÇÀÌ ºÎ»óÇÏ°í ÀÖ´Ù´Â Àǹ̴Ù. ÀÌ·¯ÇÑ ÄÝ·¹º¸·¹À̼ÇÀÇ º»ÁúÀº ¹«¾ùÀΰ¡? Àΰ£ÀÇ ÀÏÀÚ¸®¿¡ ¹ÌÄ¥ ¿µÇâÀº? ÀÌ·¯ÇÑ ÄÝ·¹º¸·¹À̼ÇÀÌ Àΰ£À» À§ÇÑ ÃÖ´ëÄ¡ÀÇ °¡Ä¡¸¦ âÃâÇÒ ¼ö ÀÖÀ»±î?


ÀΰøÁö´É ¹× ±âŸ µðÁöÅÐ ±â¼úÀÌ °æÁ¦ ¼ºÀå°ú »ý»ê¼º¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ °üÇÑ ¼¼¹Ì³ª¸¦ º¸¸é, Àΰ£°ú ±â°è Áö´ÉÀÇ ½Ã³ÊÁö°¡ ºÎÇ°µéÀÇ ´Ü¼øÇÑ ÃѰ踦 ÈξÀ ´õ ÃÊ°úÇÏ´Â °æÁ¦Àû °¡Ä¡¸¦ âÃâÇÒ ¼ö ÀÖ´Â ¹æ¹ý¿¡ ÁßÁ¡À» µÎ°í ÀÖ´Ù. ÀÌ°ÍÀÌ ¾î¶² ¸ÞÄ¿´ÏÁòÀ¸·Î ¹ß»ýÇÒÁö, ÇöÀç °úÇÐ, ºñÁî´Ï½º, Á¤ºÎ ºÐ¾ß¿¡¼­ Ä¡¿­ÇÑ ³íÀïÀÇ ÁÖÁ¦°¡ µÇ°í ÀÖ´Ù. ½º¸¶Æ® ±â°è°¡ ¾ó¸¶³ª ¸¹ÀÌ, ¾ó¸¶³ª ´Ù¾çÇÏ°Ô Àΰ£ÀÇ ¹Ì·¡ ÀÏÀÚ¸®¸¦ ¾ø¾Ù °ÍÀÎÁö¿¡ ´ëÇÑ ÇöÀç ÁøÇà ÁßÀÎ - ¶§·Î´Â ½Ã²ô·¯¿î - ³íÀïÀº »ç½Ç Áß¿äÇÑ Á¡À» ³õÄ¡°í ÀÖ´Ù. °ú°Å, Àΰ£ ÀÛ¾÷ÀÇ ÀÚµ¿È­°¡ »ç¶÷µé°ú ±â°è°¡ ÀÌÀü¿¡´Â ÇÒ ¼ö ¾ø¾ú´ø ¼ö¸¹Àº ÀÏÀ» ÇÒ ¼ö ÀÖµµ·Ï ÇØÁØ °Í°ú ¸¶Âù°¡Áö·Î, Àΰ£°ú ÄÄÇ»ÅÍÀÇ Á¶ÇÕÀÇ ÇöÀç´Â Àΰ£À̳ª ÄÄÇ»ÅÍ°¡ °¢ÀÚ È¥ÀÚ¼­´Â ÇÒ ¼ö ¾ø´Â, ¼ö¸¹Àº ÀϵéÀ» ¹Ì·¡¿¡ °¡´ÉÇÏ°Ô ÇÑ´Ù´Â °ÍÀÌ´Ù.


ÀÌ·¯ÇÑ ÀÏÀÌ ¾î¶»°Ô ÀϾ´ÂÁö »ý°¢ÇÏ·Á¸é, ¸í¹éÇÏÁö¸¸ ³Î¸® ¾Ë·ÁÁöÁö ¾ÊÀº »ç½ÇÀ» ¸í½ÉÇÏ´Â °ÍÀÌ À¯¿ëÇÒ °ÍÀÌ´Ù. Àú¼ú È°µ¿¿¡¼­ Ä¥¸éÁ¶ »÷µåÀ§Ä¡ ¸¸µé±â¿¡ À̸£±â±îÁö ¸ðµç Àΰ£ÀÇ ¾÷ÀûÀº °³º°Àû »ç¶÷ÀÌ ¾Æ´Ñ »ç¶÷À̶ó´Â Áý´ÜÀÇ ÀÛ¾÷À» ÇÊ¿ä·Î ÇÑ´Ù´Â Á¡ÀÌ´Ù. ¾Ù¹öÆ® ¾ÆÀν´Å¸ÀÎAlbert Einstein°ú °°Àº °³ÀÎÀÇ ÃµÀ缺¿¡ ÀÇÇÑ È¹±âÀûÀÎ ¹ß°ßÀ̳ª °³¹ßÁ¶Â÷µµ ³­µ¥¾øÀÌ ³ªÅ¸³­ °ÍÀÌ ¾Æ´Ï´Ù. Áï, ±×·¯ÇÑ ¾÷ÀûÀº ¸ðµÎ ŸÀÎÀÇ ÀüÀÛµéÀÌ ¼ö¾øÀÌ ½×ÀÎ °÷À» ¿øõÀ¸·Î ÇÑ´Ù.


MIT Å丶½º W. ¸»·ÐThomas W. Malone ±³¼ö¿¡ µû¸£¸é, ÀÌ·¯ÇÑ ¸ðµç °ÍµéÀ» ¼ºÃëÇÑ Àΰ£ Áý´ÜÀ» ¡®½´ÆÛ¸¶Àε塯¶ó°í ±â¼úÇÒ ¼ö ÀÖ´Ù. ±×°¡ Àú¼úÇÑ ¸íÀú ¡¶½´ÆÛ¸¶Àεå: Àΰ£°ú ÄÄÇ»ÅÍ°¡ ÇÔ²² ÇÏ´Â ³î¶ó¿î Èû Superminds: The Surprising Power of People and Computers Thinking Together¡·¿¡¼­, ¸»·Ð ±³¼ö´Â ÁöÀûÀ¸·Î º¸ÀÌ´Â ¹æ½Äµé·Î ÇÔ²² ÇൿÇÏ´Â °³ÀεéÀÇ Áý´ÜÀÌ ¡®½´ÆÛ¸¶Àε塯¶ó°í Á¤ÀÇÇß´Ù.


¿À´Ã³¯ ½´ÆÛ¸¶Àεå´Â ´ÙÀ½°ú °°Àº °ÍµéÀ» Æ÷ÇÔÇÏ´Â ´Ù¾çÇÑ ÇüŸ¦ ÃëÇÑ´Ù.


- ´ëºÎºÐÀÇ ºñÁî´Ï½º ¹× ±âŸ Á¶Á÷ÀÇ °èÃþ ±¸Á¶


- ´Ù¾çÇÑ Á¾·ùÀÇ »óÇ°°ú ¼­ºñ½º¸¦ âÃâÇÏ°í ±³È¯ÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â ½ÃÀå


- ¿©·¯ Àü¹®Á÷, »çȸ Áö¸®Àû ±×·ìÀÇ Çൿ¿¡ ÁöħÀ» ÁÖ´Â ±Ô¹ü°ú ¸í¼ºÀ» »ç¿ëÇÏ´Â °øµ¿Ã¼


- Á¤ºÎ¿Í ±âŸ ´Ù¸¥ Á¶Á÷¿¡¼­ ÈçÈ÷ º¼ ¼ö ÀÖ´Â ¹ÎÁÖÁÖÀÇ


¸ðµç ½´ÆÛ¸¶Àεå´Â ÀÏÁ¾ÀÇ Áý´ÜÁö¼ºÀ» Áö´Ï°í ÀÖ´Ù. Áý´Ü ³» °³ÀεéÀÌ È¦·Î ÇϱⰡ ºÒ°¡´ÉÇÏÁö¸¸ Áý´ÜÁö¼ºÀº À̸¦ ¼öÇàÇÒ ¼ö ÀÖ´Ù.


¿À´Ã³¯ »õ·Î¿î Á¡Àº ÀÌ·¯ÇÑ Áý´ÜÀÇ ÁöÀû, ¹°¸®Àû È°µ¿¿¡ ±â°è°¡ Á¡Á¡ ´õ ¸¹ÀÌ Âü¿©ÇÏ°í ÀÖ´Ù´Â °ÍÀÌ´Ù. Áï, »ç¶÷µé°ú ±â°èµéÀÌ °áÇÕÇÏ¿© Áö±¸»óÀÇ ±× ¾î¶² Áý´Üº¸´Ù ´õ ¶È¶ÈÇÑ ½´ÆÛ¸¶Àε带 âÁ¶ÇÒ ¼ö ÀÖ´Ù´Â ÀǹÌÀÌ´Ù.


À̸¦ À§ÇØ ¿ì¸®´Â »ç¶÷µé°ú ÄÄÇ»ÅÍ°¡ Áö´ÉÀ» ÇÊ¿ä·Î ÇÏ´Â ÀÏ¿¡ º¸´Ù ´õ È¿°úÀûÀ¸·Î ÇÔ²² ÀÛ¾÷ÇÒ ¼ö ÀÖ´Â ¹æ¹ýÀ» ÀÌÇØÇØ¾ß ÇÑ´Ù. µû¶ó¼­ ¸ÕÀú Áö´ÉÀ» Á¤ÀÇÇØ¾ß ÇÑ´Ù.


¸»·Ð ±³¼ö´Â ¡°Áö´ÉÀÇ °³³äÀº ÆľÇÇϱⰡ °í¾àÇÏ°í »ç¶÷µéÀº ´Ù¾çÇÑ ¹æ½ÄÀ¸·Î ±×°ÍÀ» Á¤ÀÇÇÑ´Ù. µû¶ó¼­ Áö´ÉÀÇ Á¤ÀǶó´Â ¸ñÇ¥¸¦ À§ÇØ ¡®Áö´É¡¯Àº ¡®¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â ´É·Â¡¯À» Æ÷ÇÔÇÑ´Ù°í °¡Á¤ÇØ º¸ÀÚ.¡±°í Á¦¾ÈÇÑ´Ù. ±×¸®°í ¿ì¸®´Â °³ÀÎÀ̳ª Áý´ÜÀÌ ´Þ¼ºÇÏ°íÀÚÇÏ´Â ¸ñÇ¥°¡ ¹«¾ùÀÎÁö¸¦ Ç×»ó ¸ð¸£±â ¶§¹®¿¡, °³Ã¼°¡ Áö´ÉÀûÀ¸·Î º¸ÀÌ´ÂÁö ¿©ºÎ´Â °üÂûÀÚ°¡ ±× °³Ã¼ÀÇ ³ë·ÂÀ» ¾î¶² ¸ñÇ¥¿¡ ±Í¼Ó½ÃÅ°´ÂÁö¿¡ ´Þ·Á ÀÖ´Ù°í °¡Á¤ÇÏÀÚ.


ÀÌ·¯ÇÑ °¡Á¤À» ±â¹ÝÀ¸·Î µÎ Á¾·ùÀÇ Áö´ÉÀ» Á¤Àdz»¸± ¼ö ÀÖ´Ù. ù ¹ø°´Â ƯÁ¤ ȯ°æ¿¡¼­ ƯÁ¤ ¸ñÇ¥¸¦ È¿°úÀûÀ¸·Î ´Þ¼ºÇÒ ¼ö ÀÖ´Â Àü¹® Áö´Éspecialized intelligenceÀÌ´Ù. ÀÌ°ÍÀº Áö´ÉÀû °³Ã¼°¡ ½º½º·Î ¾Ë°í ÀÖ´Â ¸ðµç °ÍÀ» ±â¹ÝÀ¸·Î ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ µµ¿òÀÌ µÉ °¡´É¼ºÀÌ °¡Àå Å« °ÍÀ» ¼öÇàÇÔÀ» ÀǹÌÇÑ´Ù. ´õ °£´ÜÇÏ°Ô ¸»ÇÏÀÚ¸é, Àü¹® Áö´ÉÀº ƯÁ¤ ¸ñÇ¥¸¦ ´Þ¼ºÇÏ´Â µ¥ ÀÖ¾î ¡®È¿À²¼º¡¯À» ÀǹÌÇÑ´Ù. ÀÌ·¯ÇÑ Á¡¿¡¼­, Àü¹® Áý´Ü Áö¼ºÀº ¡®Áý´Ü È¿À²¼º¡¯ÀÌ°í, ½´ÆÛ¸¶Àεå´Â ¡®È¿À²ÀûÀÎ Áý´Ü¡¯ÀÌ µÈ´Ù.


µÎ ¹ø°´Â °£È¤ ´õ Èï¹Ì·Ó°í, ´õ Æ÷°ýÀûÀ¸·Î À¯¿ëÇÑ °ÍÀÌ´Ù. ÀÌ´Â ÀÏ¹Ý Áö´Égeneral intelligenceÀ̶ó°í ÇÑ´Ù. ÀÏ¹Ý Áö´ÉÀº ´Ù¾çÇÑ È¯°æ¿¡¼­ ´Ù¾çÇÑ ¸ñÇ¥¸¦ È¿°úÀûÀ¸·Î ´Þ¼ºÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ´Ù. ÀÌ´Â Áö´ÉÀûÀÎ È°µ¿°¡°¡ ƯÁ¤ÇÑ Á¾·ùÀÇ ÀÏ¿¡ ´É¼÷ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ³ÐÀº ¹üÀ§¿¡¼­ ÀÏÀ» ¼öÇàÇÏ´Â ¹æ¹ýÀ» ÇнÀÇÏ´Â µ¥µµ ´É¼÷ÇÏ´Ù´Â °ÍÀ» ÀǹÌÇÑ´Ù. Áï, Áö´É¿¡ ´ëÇÑ ÀÌ·¯ÇÑ Á¤ÀÇ´Â ¡®´ÙÀç´Ù´ÉÇÔ¡¯ ȤÀº ¡®ÀûÀÀ·Â¡¯À» °ÅÀÇ °°Àº °ÍÀ¸·Î º»´Ù. ÀÌ·¯ÇÑ Àǹ̿¡¼­ ÀÏ¹Ý Áý´ÜÁö¼ºÀº ¡®Áý´Ü ´ÙÀç´Ù´ÉÇÔ¡¯ ȤÀº ¡®Áý´Ü ÀûÀÀ·Â¡¯À» ÀǹÌÇÑ´Ù. ¿©±â¿¡¼­ ½´ÆÛ¸¶Àεå´Â ´ÙÀç´Ù´ÉÇÏ °Å³ª ÀûÀÀ·Â ÀÖ´Â Áý´ÜÀ¸·Î Á¤ÀǵȴÙ.


ÀÌ·¯ÇÑ Á¤ÀǸ¦ ±â¹ÝÇϸé, ¿¬À̾î Áú¹®ÀÌ À̾îÁú °ÍÀÌ´Ù. ¡®ÄÄÇ»ÅÍ°¡ °¡Áö°í ÀÖ´Â Áö´ÉÀº ¹«¾ùÀΰ¡?¡¯


Àü¹® Áö´É°ú ÀÏ¹Ý Áö´ÉÀÇ Â÷ÀÌ´Â ¿À´Ã³¯ ÄÄÇ»ÅÍ¿Í Àΰ£ÀÇ °¢ ´É·Â Â÷À̸¦ ¸íÈ®ÇÏ°Ô ÇØÁØ´Ù. ÀϺΠÀΰøÁö´É ÄÄÇ»Åʹ ƯÁ¤ Á¾·ùÀÇ Àü¹® Áö´É Ãø¸é¿¡¼­´Â »ç¶÷µéº¸´Ù ÈξÀ ´õ ¡®¶È¶È¡¯ÇÏ´Ù. ¿À´Ã³¯ ÀΰøÁö´É¿¡ ´ëÇØ ´ëºÎºÐÀÇ »ç¶÷µéÀÌ ÀνÄÇÏÁö ¸øÇÏ´Â °¡Àå Áß¿äÇÑ °Íµé Áß Çϳª´Â ÀΰøÁö´ÉÀÌ ±×Àú ±×·± Àü¹®ÀÌ ¾Æ´Ñ (Àΰ£Àº »ó»óÇÒ ¼öÁ¶Â÷ ¾øÀÌ) ¸Å¿ì Àü¹®È­µÇ¾î ÀÖ´Ù´Â °ÍÀÌ´Ù.


±¸±ÛÀÇ °Ë»ö ¿£ÁøÀº ¾ß±¸ °ÔÀÓ¿¡ ´ëÇÑ ´º½º ±â»ç¸¦ °Ë»öÇÏ´Â µ¥ ¸Å¿ì À¯¿ëÇÏ´Ù. ±×·¯³ª ±¸±ÛÀÌ ´©±º°¡ÀÇ ÀÚ³àµéÀÇ ¸®Æ² ¸®±× °ÔÀÓ¿¡ ´ëÇÑ ±ÛÀ» ÀÛ¼ºÇÒ ¼ö´Â ¾ø´Ù. IBMÀÇ ¿Ó½¼WatsonÀº Á¦ÆÛµðJeopardy! ÄûÁî¼î¿¡¼­ Àΰ£À» ÀÌ°å´Ù. ±×·¯³ª ÄûÁî¼î¿¡ Ã⿬ÇÑ ¿Ó½¼ ÇÁ·Î±×·¥Àº ü½ºº¸´Ù ÈξÀ ½¬¿î ƽÅÃÅåtic-tac-toe(»ï¸ñ°ÔÀÓ)À» ÇÏÁö ¸øÇÑ´Ù. Å×½½¶óÀÇ ÀÚµ¿Â÷µµ ¸¶Âù°¡Áö´Ù. ÀÚÀ²ÁÖÇà ÀÚµ¿Â÷´Â Àΰ£ ¿îÀüÀÚ ¾øÀÌ ½º½º·Î ¿îÀüÇÏÁö¸¸, â°í ¼±¹Ý¿¡¼­ ¾î¶² ƯÁ¤ »óÀÚ¸¦ Áý¾î ¿Ã¸± ¼ö´Â ¾ø´Ù.


¹°·Ð ÀÌ·¯ÇÑ ´Ù¸¥ ÀϵéÀ» ¼öÇàÇÒ ¼ö ÀÖ´Â ÄÄÇ»ÅÍ ½Ã½ºÅÛµéÀÌ ÀÖ´Ù. ±×·¯³ª ¿äÁ¡Àº ±×µéÀÌ °¢±â ´Ù¸¥ Ư¼öÇÑ ÇÁ·Î±×·¥ÀÌ ¾Æ´Ï¶ó °¢°¢ÀÇ Æ¯Á¤ »óȲ¿¡¼­ ¹«¾ùÀ» ÇØ¾ß ÇÒÁö °áÁ¤ÇÒ ¼ö ÀÖ´Â ÀϹÝÀû Àΰø Áö´ÉÀº ¾Æ´Ï¶ó´Â °ÍÀÌ´Ù. ÀÏ¹Ý Áö´ÉÀ» °¡Áø Àΰ£ÀÌ ¼­·Î ´Ù¸¥ ƯÁ¤ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇÑ ±ÔÄ¢À» Æ÷ÇÔÇÏ´Â ÇÁ·Î±×·¥À» ÀÛ¼ºÇØ¾ß ÇÏ°í, ÁÖ¾îÁø »óȲ¿¡¼­ ¾î¶² ÇÁ·Î±×·¥À» ½ÇÇàÇÒÁö °áÁ¤ÇØ¾ß ÇÑ´Ù.


»ç½Ç, ¿À´Ã³¯ÀÇ ¾î¶² ÄÄÇ»Å͵µ º¸ÅëÀÇ 5¼¼ Àΰ£ÀÇ ÀÏ¹Ý Áö´É ¼öÁØ¿¡ °¡±õÁö ¾Ê´Ù. Áï, ¿À´Ã³¯ÀÇ ¾î¶² ÄÄÇ»Å͵µ º¸ÅëÀÇ 5¼¼ ¾î¸°ÀÌ°¡ ÇÒ ¼ö ÀÖ´Â ¾öû³­ ¼öÀÇ ÁÖÁ¦¿¡ ´ëÇØ Çö¸íÇÏ°Ô ´ëÈ­ÇÒ ¼ö ¾ø´Â °ÍÀÌ´Ù. ¾ÆÀ̵éÀº °ÉÀ» ¼ö ÀÖ°í, ÀÌ»óÇÑ ¸ð¾çÀÇ ¹°Ã¼¸¦ µé¸ç, »ç¶÷µéÀÌ ¾ðÁ¦ ÇູÇÏ°í ½½ÇÁ°í È­¸¦ ³»´ÂÁö ¾Ë ¼ö ÀÖ´Ù.


±×·¸´Ù¸é ÀÌ·¯ÇÑ °ÝÂ÷°¡ ¾ó¸¶³ª »¡¸® º¯È­µÉ °ÍÀΰ¡? 1950³â´ë Ãʱâ ÀΰøÁö´ÉÀÌ µîÀåÇÑ ÀÌÈĺÎÅÍ ±×·¨Áö¸¸, ÀΰøÁö´É ºÐ¾ß¿¡¼­ÀÇ ¹ßÀüÀ» ¿¹ÃøÇϱâ¶õ ³Ê¹«³ª ¾î·Æ´Ù. ÀΰøÁö´É ¿¬±¸ÀÚ ½ºÆ©¾îÆ® ¾Ï½ºÆ®·ÕStuart Armstrong°ú Ä«ÀÌ ¼ÒÅ»¶óKaj Sotala°¡ 1950³â¿¡¼­ 2012³â »çÀÌ¿¡ ÀÏ¹Ý Áö´ÉÀ» Áö´Ñ ÀΰøÁö´É(ÀÌÇÏ ÀÏ¹Ý ÀΰøÁö´É)ÀÌ ¾ðÁ¦ µîÀåÇÒ °ÍÀΰ¡¿¡ °üÇÑ 95°ÇÀÇ ¿¹Ãø ÀÚ·áµéÀ» ºÐ¼®ÇßÀ» ¶§, Àü¹®°¡¿Í ºñ°úÇÐÀÚ ¸ðµÎ ÇâÈÄ 15³â¿¡¼­ 25³â »çÀÌ¿¡ ÀϾ °ÍÀ̶ó°í Àü¸ÁÇÑ »ç½ÇÀ» ¾Ë ¼ö ÀÖ´Ù. Áï, 62³â µ¿¾È °ü°èÀÚµéÀº ÀÌ·¯ÇÑ ÀÏ¹Ý ÀΰøÁö´ÉÀÌ Ç×»ó (±×µé ½Ã´ë ±âÁØÀ¸·Î) Æò±Õ 20³â Á¤µµ ÈÄ¿¡ ³ªÅ¸³¯ °ÍÀ̶ó°í ºÃ´ø °ÍÀÌ´Ù.


´õ ÃÖ±ÙÀÇ ¼³¹®Á¶»ç ¹× ÀÎÅÍºä ¶ÇÇÑ ÀÌ·¯ÇÑ Àå±âÀû ÆÐÅÏ°ú ÀÏÄ¡ÇÏ´Â °æÇâÀÌ ÀÖ´Ù. 2018³â ÇöÀç ÀϹÝÀΰú ÀΰøÁö´É Àü¹®°¡ ¸ðµÎ ¿©ÀüÈ÷ ÀÏ¹Ý ÀΰøÁö´ÉÀÌ ¾à 15³â¿¡¼­ 25³â ³»¿¡ µîÀåÇÒ °ÍÀ¸·Î ¿¹ÃøÇÑ´Ù. ÀÌ°ÍÀº ¡®È®½ÇÇÏ°Ô ¾Ë ¼ö´Â ¾øÁö¸¸ ÀÏ¹Ý ÀΰøÁö´ÉÀÌ ¾ÕÀ¸·Î ¼ö½Ê ³â ³»¿¡ ³ªÅ¸³¯ °Í¡¯À̶ó°í ÀÚ½ÅÀÖ°Ô ¿¹ÃøÇÏ´Â »ç¶÷µé¿¡°Ô ȸÀÇÀûÀÎ ÀÌÀ¯°¡ µÈ´Ù. ¸»·Ð ±³¼ö´Â ÀϺΠÁß´ëÇÑ »çȸÀû ÀçÇØ°¡ ¾ø´Ù¸é, ÀÏ¹Ý ÀΰøÁö´ÉÀÌ ¡®¾ðÁ¨°¡(¾Æ¸¶µµ ¾ðÁ¨°¡)¡¯ ³ªÅ¸³ªÁö¸¸, ¾ÕÀ¸·Î ¼ö½Ê ³â µ¿¾ÈÀº ±×·¸Áö ¾ÊÀ» °ÍÀ¸·Î »ý°¢ÇÑ´Ù°í ¹àÇû´Ù.


±×¶§±îÁö ÄÄÇ»Å͸¦ È°¿ëÇÏ´Â µ¥ ÀÖ¾î ¾î¶² ÇüÅ·εç Àΰ£ÀÌ °³ÀÔÇÒ ÇÊ¿ä°¡ ÀÖ´Ù. ¿À´Ã³¯ ¼ö¸¹Àº ÀÛ¾÷¿¡¼­ »ç¶÷µéÀº ±â°è°¡ ÇÒ ¼ö ¾ø´Â ÀϺΠÀÛ¾÷À» ¼öÇàÇÏ°í ÀÖ´Ù. ±×·¯³ª ÄÄÇ»ÅÍ°¡ ÀÚüÀûÀ¸·Î ¿ÏÀüÇÏ°Ô ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ´Â °æ¿ì¿¡µµ »ç¶÷µéÀº Ç×»ó ¼ÒÇÁÆ®¿þ¾î¸¦ °³¹ßÇÏ°í ½Ã°£ÀÌ Áö³²¿¡ µû¶ó ¼ÒÇÁÆ®¿þ¾î¸¦ ¼öÁ¤ÇØ¾ß ÇÑ´Ù. ¶ÇÇÑ ±×µéÀº ´Ù¸¥ »óȲ¿¡¼­ ´Ù¸¥ ÇÁ·Î±×·¥À» »ç¿ëÇÒ ½Ã±â¿Í ÀÏÀÌ À߸øµÇ¾úÀ» ¶§ ¹«¾ùÀ» ÇØ¾ß ÇÒÁö¸¦ °áÁ¤ÇÑ´Ù.


ÀÌ·¸µí ÄÄÇ»ÅÍ¿Í Àΰ£ÀÇ ½Ã³ÊÁö¸¦ °í·ÁÇÒ ¶§, Àΰ£°ú ÄÄÇ»ÅÍ´Â ¾î¶»°Ô Çù·ÂÇÏ¿© °¡Ä¡¸¦ âÃâ ÇÒ ¼ö ÀÖÀ»±î?


¸»·Ð ±³¼ö¿¡ µû¸£¸é, »ç¶÷µé°ú ÄÄÇ»ÅÍ°¡ ¾î¶»°Ô Çù·ÂÇÒ ¼ö ÀÖ´ÂÁö¿¡ ´ëÇÑ °¡Àå Èï¹Ì·Î¿î °¡´É¼º Áß Çϳª´Â Àΰ£ÀÇ ³ú°¡ ¾î¶»°Ô ±¸¼ºµÇ¾î ÀÖ´ÂÁö¸¦ ºñÀ¯ÇÏ¿© ³ª¿Â °ÍÀ̶ó´Â ÁÖÀåÀÌ´Ù. ³ú¿¡´Â ¿©·¯ Á¾·ùÀÇ ÇÁ·Î¼¼½ÌÀ» Àü¹®À¸·Î ÇÏ´Â ¸¹Àº ºÎºÐÀÌ ÀÖÀ¸¸ç, ÀÌµé ºÎºÐÀº ¾î¶»°Ôµç ¿ì¸®°¡ Áö´ÉÀ̶ó°í ºÎ¸£´Â Àü¹ÝÀûÀÎ ÇൿÀ» »ý¼ºÇϱâ À§ÇØ ÇÔ²² ÀÛµ¿ÇÑ´Ù. ¿¹¸¦ µé¾î, ³úÀÇ ÇÑ ºÎºÐÀº ¾ð¾î¸¦ ¸¸µå´Â µ¥ ¸¹ÀÌ °ü¿©ÇÏ°í, ¶Ç ´Ù¸¥ ºÎºÐÀº ¾ð¾î¸¦ ÀÌÇØÇÏ°í, ¶Ç ´Ù¸¥ ºÎºÐÀº ½Ã°¢ Á¤º¸¸¦ ó¸®ÇÑ´Ù. ÀΰøÁö´ÉÀÇ ¾Æ¹öÁö Áß ÇÑ ¸íÀÎ ¸¶ºó ¹Î½ºÅ°Marvin Minsky´Â ³úÀÇ ÀÌ·¯ÇÑ ±¸Á¶¸¦ ¡®¸¶À½ÀÇ »çȸsociety of mind¡¯¶ó ºÒ·¶´Ù.


¹Î½ºÅ°´Â Àΰ£ÀÇ µÎ³ú°¡ ¾î¶»°Ô ÀÛµ¿ÇÏ°í ÀΰøÁö´É ÇÁ·Î±×·¥ÀÌ ¾î¶»°Ô °³¹ßµÉÁö¿¡ ÁÖ·Î °ü½ÉÀ» ½ñ¾Ò´Ù. ±×·¯³ª (±×°¡ ±×·¯ÇÑ Àǵµ·Î ±×·¸°Ô ¾ð±ÞÀ» Çß´ÂÁö ¾Ë ¼ö´Â ¾øÁö¸¸) ±×ÀÇ ºñÀ¯´Â »ç¶÷µé°ú ÄÄÇ»ÅÍ·Î ±¸¼ºµÈ ½´ÆÛ¸¶Àε尡 ¾î¶»°Ô ÀÛµ¿ÇÒÁö¿¡ ´ëÇÑ ±²ÀåÈ÷ ³î¶øµµ·Ï Áß¿äÇÑ ¾ÆÀ̵ð¾î¸¦ Á¦½ÃÇÑ´Ù. Áï ÁøÂ¥ ÀÏ¹Ý ÀΰøÁö´ÉÀÌ ÃâÇöÇϱâ±îÁö ±â´Ù¸®´Â °Íº¸´Ù´Â, ±×º¸´Ù ÈξÀ Àü¿¡ »ç¶÷µé°ú ±â°è°¡ Çù·ÂÇÏ¿© ¡®¸¶À½ÀÇ »çȸ¡¯¸¦ ±¸ÃàÇÏ´Â °ÍÀÌ´Ù. ÀüüÀûÀÎ ÀÏ Áß »ç¶÷µé°ú ±â°è°¡ ÇÔ²² °¢°¢ÀÇ ºÎºÐÀ» ¼öÇàÇÏ´Â °ÍÀ» Æ÷ÇÔÇÏ´Â ¸¶À½ÀÇ »çȸ¸¦ ±¸ÃàÇÔÀ¸·Î½á ÃÑüÀûÀ¸·Î Áö´ÉÀûÀÎ ½Ã½ºÅÛÀ» ¸¸µå´Â °ÍÀÌ´Ù.


Áï, ÄÄÇ»ÅÍ°¡ ½º½º·Î Àüü ¹®Á¦¸¦ ÇØ°áÇÏÁö ¾Ê°í, µ¿ÀÏÇÑ ¹®Á¦¿¡ ´ëÇØ ¿©·¯ »ç¶÷°ú ¿©·¯ ±â°è°¡ ÇÔ²² ÀÛµ¿ÇÏ´Â ÇÏÀ̺긮µå ¡®»çÀ̹ö-Àΰ£ ½Ã½ºÅÛ¡¯À» ¸¸µé ¼ö ÀÖ´Ù. ¸î¸î °æ¿ì¿¡ Âü¿©ÀÚµéÀº ±×µéÀÌ ´Ù¸¥ »ç¶÷µé ȤÀº ¾î¶² ±â°è¿Í »óÈ£ ÀÛ¿ëÇÏ´ÂÁö ¿©ºÎÁ¶Â÷ ¾ËÁö ¸øÇϰųª ¾Æ¿¹ ½Å°æ ¾²Áö ¾ÊÀ» ¼öµµ ÀÖ´Ù. »ç¶÷µéÀº ±â°è°¡ °¡Áö°í ÀÖÁö ¾ÊÀº ÀÏ¹Ý Áö´É°ú ±âŸ ±â¼úÀ» Á¦°øÇÒ ¼ö ÀÖ´Ù. ±â°è´Â »ç¶÷µéÀÌ °¡Áö°í ÀÖÁö ¾ÊÀº Áö½Ä°ú ±âŸ ±â´ÉÀ» Á¦°øÇÒ ¼ö ÀÖ´Ù. ±×¸®°í ÀÌ ½Ã½ºÅÛÀº ÀÌÀü¿¡ ¾î¶² »ç¶÷, ´Üü, ÄÄÇ»Åͺ¸´Ù ´õ Áö´ÉÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖ´Ù.


ÀÌ°ÍÀÌ ÀΰøÁö´É¿¡ ´ëÇØ ÇöÀç ÀϹÝÀûÀ¸·Î »ý°¢µÇ´Â °Í°ú ´Ù¸¥ Á¡Àº ¹«¾ùÀϱî? ¿À´Ã³¯ ¸¹Àº »ç¶÷µéÀº ÄÄÇ»ÅÍ°¡ ±Ã±ØÀûÀ¸·Î ´ëºÎºÐÀÇ ÀÏÀ» È¥ÀÚ ¼öÇàÇÒ °ÍÀÌÁö¸¸, »ç¶÷ÀÌ ÇÊ¿äÇÑ »óȲ¿¡´Â ¿©ÀüÈ÷ »ç¶÷ÀÌ ÇÙ½ÉÀûÀ¸·Î ¹èÄ¡µÇ¾î¾ß ÇÑ´Ù°í °¡Á¤ÇÑ´Ù. ±×·¯³ª ´ëºÎºÐÀÇ ÀÏÀÌ »ç¶÷ Áý´Ü¿¡ ÀÇÇØ ¼öÇàµÈ´Ù´Â »ç½ÇÀ» ±ú´Ý´Â °Í°ú µµ¿òÀÌ µÈ´Ù¸é ±× »óȲ¿¡ ÄÄÇ»Å͸¦ ¹èÄ¡ÇÏ´Â °ÍÀÌ ÈξÀ ´õ À¯¿ëÇÒ °ÍÀÌ´Ù. Áï, ¿ì¸®´Â »ç¶÷À» ÇÙ½ÉÀûÀÎ À§Ä¡¿¡, ±×¸®°í ±×·¯ÇÑ »ç¶÷ Áý´Ü¿¡ ÄÄÇ»Å͸¦ ¹èÄ¡ÇÏ´Â ÂÊÀ¸·Î »ý°¢À» ¿Å°Ü¾ß ÇÑ´Ù.


±×ÀÇ Àú¼ú¿¡¼­ ¸»·Ð ±³¼ö´Â ¹¯´Â´Ù. ¡°±â¾÷À̳ª ´Ù¸¥ Á¶Á÷ÀÌ ÄÄÇ»Å͸¦ Àΰ£ Áý´ÜÀÇ ÀϺηΠ»ç¿ëÇÏ·Á´Â °æ¿ì ÄÄÇ»ÅÍ°¡ ÇØ´ç Áý´Ü¿¡¼­ ¾î¶² ¿ªÇÒÀ» ¼öÇàÇØ¾ß Çϴ°¡?¡±


¿À´Ã³¯ »ç¶÷°ú ±â°è°¡ ¼öÇàÇÏ´Â ¿ªÇÒ¿¡ ´ëÇØ »ý°¢ÇÒ ¶§ 4°¡Áö °¡´É¼ºÀÌ ÀÖ´Ù. »ç¶÷µéÀº ±â°è°¡ µµ±¸·Î¸¸ ÀÛµ¿ÇÒ ¶§ °¡Àå Àß Á¦¾îÇÑ´Ù. ±×¸®°í ±â°èÀÇ ¿ªÇÒÀÌ Á¶¼ö, µ¿·á ¹× ¸¶Ä§³» °ü¸®ÀÚ·Î È®´ëµÊ¿¡ µû¶ó ±â°è´Â ¿¬¼ÓÀûÀ¸·Î ´õ ¸¹Àº Á¦¾î±ÇÀ» °¡Áö°Ô µÈ´Ù. ÀÌ ¿ªÇÒµé °¢°¢À» »ìÆ캸ÀÚ.


1. µµ±¸
¸ÁÄ¡³ª Àܵð ±ð´Â ±â°è¿Í °°Àº ¹°¸®Àû µµ±¸´Â Àΰ£ÀÌ °¡Áö°í ÀÖÁö ¾ÊÀº ´É·ÂÀ» Á¦°øÇÑ´Ù. ±×·¯³ª Àΰ£ »ç¿ëÀÚ°¡ Á÷Á¢ÀûÀ¸·Î ÅëÁ¦±ÇÀ» °®°í, ÇൿÀ» ÁöµµÇÏ°í ÁøÇà »óȲÀ» ¸ð´ÏÅ͸µÇÑ´Ù. Á¤º¸ µµ±¸µµ ºñ½ÁÇÏ´Ù. ½ºÇÁ·¹µå ½ÃÆ®¸¦ »ç¿ëÇϸé, ÇÁ·Î±×·¥Àº Àΰ£ »ç¿ëÀÚ°¡ ½ÃÅ°´Â ´ë·Î ¼öÇàÇÑ´Ù. ÀÌ·Î ÀÎÇØ À繫 ºÐ¼®°ú °°Àº ¾÷¹«¿¡ ´ëÇÑ »ç¿ëÀÚÀÇ Àü¹® Áö´ÉÀÌ Çâ»óÇÏ°ï ÇÑ´Ù.


±×·¯³ª ¾ÕÀ¸·Î ÀÚµ¿È­ µµ±¸ »ç¿ë¿¡¼­ °¡Àå Áß¿äÇÑ Á¡Àº °³º° »ç¿ëÀÚÀÇ Àü¹® Áö´ÉÀ» ³ôÀÌ´Â µ¥ ÀÖ´Â °ÍÀÌ ¾Æ´Ï¶ó »ç¶÷µéÀÌ ¼­·Î È¿°úÀûÀ¸·Î Ä¿¹Â´ÏÄÉÀ̼ÇÇÒ ¼ö ÀÖµµ·Ï µµ¿Í Áý´ÜÁö¼ºÀ» ³ôÀÌ´Â µ¥ ÀÖ´Ù.


¿À´Ã³¯¿¡µµ ÄÄÇ»ÅÍ´Â Àΰ£ÀÇ Ä¿¹Â´ÏÄÉÀ̼ÇÀ» Çâ»ó½ÃÅ°´Â µµ±¸·Î ÁÖ·Î »ç¿ëµÈ´Ù. ÀüÀÚ¸ÞÀÏ, ¸ð¹ÙÀÏ ÀÀ¿ë ÇÁ·Î±×·¥, À¥, ÆäÀ̽ººÏ, ±¸±Û, À§Å°Çǵð¾Æ, ³ÝÇø¯½º, À¯Æ©ºê, Æ®À§ÅÍ¿Í °°Àº »çÀÌÆ®¸¦ ÅëÇØ Àü ¼¼°è¿¡¼­ °¡Àå ´ë±Ô¸ð·Î ¿¬°áµÈ Áý´ÜÀÌ ¸¸µé¾îÁ³´Ù. ÀÌ ¸ðµç °æ¿ì, ÄÄÇ»ÅÍ´Â ¼ö¸¹Àº ¡®Áö´ÉÀû¡¯ 󸮸¦ ¼öÇàÇÏÁö´Â ¾Ê´Â´Ù. ±×µéÀº ÁÖ·Î »ç¶÷¿¡ ÀÇÇØ »ý¼ºµÈ Á¤º¸¸¦ ´Ù¸¥ »ç¶÷¿¡°Ô Àü¼ÛÇÑ´Ù.


¿ì¸®´Â ÀΰøÁö´ÉÀÇ ÀáÀç·ÂÀ» °ú´ëÆò°¡ÇÏ´Â °æ¿ì°¡ ÀÖ´Ù. ±×·¯³ª ÀÌ¹Ì Áö±¸»ó¿¡ Á¸ÀçÇÏ´Â ¡®Àΰ£ µÎ³ú¶ó ºÒ¸®´Â ³î¶øµµ·Ï °­·ÂÇÑ 70¾ï °³ ÀÌ»óÀÇ Á¤º¸ ÇÁ·Î¼¼¼­µéÀÌ ÃÊ¿¬°áhyperconnectivityµÊÀ¸·Î½á Áö´Ï°Ô µÈ ÀáÀç·Â¡¯Àº °ú¼ÒÆò°¡ÇÏ´Â °æ¿ì°¡ ÀÖ´Ù.


2. Á¶¼ö
µµ±¸¿Í ´Þ¸® Àΰ£ µµ¿ì¹Ì´Â Á÷Á¢ÀûÀÎ ÁÖÀǸ¦ ±â¿ïÀÌÁö ¾Ê°í ÀÛ¾÷ÇÒ ¼ö ÀÖ°í, ±× ¿Ü ´Ù¸¥ »ç¶÷ÀÌ ÁöÁ¤ÇÑ ÀÏ¹Ý ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ Á¾Á¾ ÁÖµµ±ÇÀ» Áã±âµµ ÇÑ´Ù. ÀÚµ¿È­µÈ º¸Á¶ µµ±¸µµ ¸¶Âù°¡ÁöÁö¸¸, µµ±¸¿Í º¸Á¶ÀÇ °æ°è°¡ Ç×»ó Á¤È®ÇÑ °ÍÀº ¾Æ´Ï´Ù. ¿¹¸¦ µé¾î ¹®ÀÚ ¸Þ½ÃÁö Ç÷§ÆûÀº ´ëºÎºÐ µµ±¸ÀÌÁö¸¸ ¶§·Î´Â »ç¿ëÀÚÀÇ - ¸í¹éÇÏ°Ô ¹Î¸ÁÇÑ - ¸ÂÃã¹ýÀ» ÀÚµ¿ ¼öÁ¤ÇÏ´Â ÁÖµµ·ÂÀ» ¹ßÈÖÇϱ⵵ ÇÑ´Ù.


ÀÚµ¿È­ Á¶¼öÀÇ ¶Ç ´Ù¸¥ »ç·Ê´Â ¿Â¶óÀÎ ÀÇ·ù ¼Ò¸Å¾÷ üÀÎ ½ºÆ¼Ä¡ÇȽºStitch Fix Inc¿¡¼­ »ç¿ëÇÏ´Â ¼ÒÇÁÆ®¿þ¾î·Î, ÀÌ ÀÚµ¿È­ Á¶¼ö´Â Àΰ£ ½ºÅ¸Àϸ®½ºÆ®°¡ °í°´¿¡°Ô ¿ÊÀ» ÃßõÇÏ´Â µ¥ µµ¿òÀ» ÁØ´Ù. ½ºÆ¼Ä¡ÇȽº °í°´µéÀº ÀڽŵéÀÇ ½ºÅ¸ÀÏ, »çÀÌÁî, °¡°Ý ¼±È£µµ¿¡ ´ëÇÑ »ó¼¼ÇÑ ¼³¹®À» ÀÛ¼ºÇØÁÖ´Â µ¥, ÀÌ·¸°Ô ¼öÁýµÈ µ¥ÀÌÅÍ´Â ±â°è ÇнÀ ¾Ë°í¸®ÁòÀ¸·Î ¼ÒÈ­µÇ¾î, °¢ °í°´¿¡°Ô ÀûÇÕÇÑ ¿ÊÀ» °ñ¶óÁÖ´Â µ¥ È°¿ëµÈ´Ù.


ÀÌ·¯ÇÑ ÆÄÆ®³Ê½ÊÀÇ ¾Ë°í¸®Áò Á¶¼ö´Â Àΰ£ ½ºÅ¸Àϸ®½ºÆ®º¸´Ù ÈξÀ ¸¹Àº Á¤º¸¸¦ °è»êÇÒ ¼ö ÀÖ´Ù. ¿¹¸¦ µé¾î, û¹ÙÁö´Â µü ¸Â´Â °ÍÀ» °í¸£´Â °Ô ½±Áö ¾ÊÀº Ç°¸ñÀ¸·Î ¾Ç¸í ³ô´Ù. ±×·¯³ª ÀÌ ¾Ë°í¸®ÁòÀº ºñ½ÁÇÑ ÃøÁ¤°ªÀ» °¡Áø ´Ù¸¥ °í°´ÀÌ °áÁ¤ÇÑ ´Ù¾çÇÑ ½ºÅ¸ÀÏÀÇ Ã»¹ÙÁö¸¦ ¼±º°ÇÒ ¼ö ÀÖ´Ù.


Àΰ£ ½ºÅ¸Àϸ®½ºÆ®°¡ ÇÏ´Â ÀÏÀº °¢ °í°´µé¿¡°Ô º¸³¾ û¹ÙÁöÀÇ ½ºÅ¸ÀÏÀ» ÃÖÁ¾ °áÁ¤ÇÏ´Â °ÍÀÌ´Ù. Àΰ£ ½ºÅ¸Àϸ®½ºÆ®´Â ½ºÆ¼Ä¡ÇȽº ¾Ë°í¸®Áò Á¶¼ö°¡ ó¸®ÇÏ´Â ¹ýÀ» ÇнÀÇÏÁö ¾ÊÀº Á¤º¸¸¦ °í·ÁÇÒ ¼ö ÀÖ´Ù. ¿¹¸¦ µé¾î, Àΰ£ ½ºÅ¸Àϸ®½ºÆ®´Â °í°´ÀÌ ¿øÇÏ´Â °ÍÀÌ º£À̺ñ »þ¿ö¸¦ À§ÇÑ °ÍÀÎÁö ºñÁî´Ï½º ¹ÌÆÃÀ» À§ÇÑ °ÍÀÎÁö¸¦ ¾Ë ¼ö ÀÖ´Ù. Àΰ£°ú ÄÄÇ»ÅÍÀÇ Çù·ÂÀ¸·Î È¥ÀÚ¼­ ÇÒ ¼ö ÀÖ´Â °Íº¸´Ù ´õ ³ªÀº ¼­ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖ´Ù.


3. µ¿·á
ÄÄÇ»ÅÍÀÇ °¡Àå Èï¹Ì·Î¿î »ç¿ë¹ý Áß ÀϺδ Á¶¼ö³ª µµ±¸º¸´Ù´Â ¿ÀÈ÷·Á Àΰ£ µ¿·áó·³ ¿ªÇÒÀ» ÇÏ´Â °æ¿ì¸¦ Æ÷ÇÔÇÏ°í Àִµ¥, ÀΰøÁö´É°ú °ü·Ã ¾ø´Â °æ¿ì¿¡µµ ±×·¸´Ù. ¿¹¸¦ µé¾î, ÁÖ½Ä Æ®·¹ÀÌ´õÀÎ °æ¿ì, ±×´Â ÀÎÁöÇÏÁö ¸øÇÑ Ã¤ ÀÚµ¿È­µÈ ÇÁ·Î±×·¥ Æ®·¹À̵ù ½Ã½ºÅÛ°ú °Å·¡ÇÏ°í ÀÖÀ» ¼ö ÀÖ´Ù.


´º¿å¿¡ À§Ä¡ÇÑ ·¹¸ð³×ÀÌµå º¸Çè»çLemonade Insurance Agency, LLC¿¡¼­ °í°´ÀÇ º¸Çè û±¸ ¾÷¹«¸¦ ÇÏ´Â °æ¿ì, ÁüAI JimÀ̶ó´Â ÀΰøÁö´É µ¿·á¸¦ ¸¸³¯ ¼ö ÀÖ´Ù. ÁüÀº äÆú¿À¸·Î ·¹¸ð³×À̵åÀÇ °í°´ ÆÄÀÏÀº ¹®ÀÚ ¸Þ½ÃÁö¸¦ ±³È¯ÇÏ¿© û±¸ÇÑ´Ù. û±¸°¡ ƯÁ¤ ¸Å°³ º¯¼ö¸¦ ÃæÁ·Çϸé ÁüÀº ÀÚµ¿À¸·Î °ÅÀÇ Áï½Ã ÁöºÒ 󸮸¦ ÇÑ´Ù. ±×·¸Áö ¾Ê´Ù¸é, ÁüÀº ±× ÀÏÀ» ³¡³¾ Àΰ£ µ¿·á¿¡°Ô ¹Ìó¸® °ÇÀ» Àü´ÞÇÑ´Ù.


4. °ü¸®ÀÚ
°ü¸®ÀÚ ¿ªÇÒÀº ¾î¶³±î? Àΰ£ °ü¸®ÀÚ´Â ¾÷¹«¸¦ À§ÀÓÇÏ°í, Áö½Ã¸¦ ³»¸®°í, °á°ú¸¦ Æò°¡Çϸç, ´Ù¸¥ »ç¶÷µé°úÀÇ Çù·ÂÀ» Á¶Á¤ÇÑ´Ù. ±â°è°¡ ÀÌ·¯ÇÑ ¸ðµç ¾÷¹«¸¦ ¼öÇàÇÒ ¼ö ÀÖ°í ½ÇÁ¦·Î ±×·¯ÇÒ ¶§, ±â°è°¡ ÀÚµ¿È­µÈ °ü¸®Àڷμ­ ÀÏÀ» ÇÏ´Â °ÍÀÌ´Ù.


¾î¶² »ç¶÷µéÀº °ü¸®Àڷμ­ÀÇ ±â°è¿¡ ´ëÇÑ ¾ÆÀ̵ð¾î´Â ¸Å¿ì À§ÇùÀûÀ̶ó°í »ý°¢ÇÏÁö¸¸, ¿ì¸®´Â ÀÌ¹Ì ±â°è °ü¸®ÀÚ¿Í ÇÔ²² ¸ÅÀÏ °°ÀÌ »ì°í ÀÖ´Ù. ±³Åë ½ÅÈ£µîÀº ¿îÀüÀÚ¸¦ ¾È³»ÇÑ´Ù. ÀÚµ¿ ÄÝ ¶ó¿ìÅÍ´Â Äݼ¾ÅÍ Á÷¿ø¿¡°Ô ÀÛ¾÷À» Àü´ÞÇÑ´Ù. ±×¸®°í ´ëºÎºÐÀÇ »ç¶÷µéÀº À̸¦ À§ÇùÀûÀ̰ųª ¹®Á¦°¡ µÇ´Â »óȲÀ̶ó°í ÇÏÁö ¾Ê´Â´Ù.


¹Ì·¡¿¡´Â °ü¸®ÀÚ ¿ªÇÒÀ» ¼öÇàÇÏ´Â ±â°èµéÀÇ »ç·Ê°¡ ´õ ¸¹¾ÆÁú °¡´É¼ºÀÌ ÀÖ´Ù. ¿¹¸¦ µé¾î, Å©¶ó¿ìµåÆ÷ÁöCrowdForge ½Ã½ºÅÛÀº ¹®¼­ ÀÛ¼º°ú °°Àº º¹ÀâÇÑ ¾÷¹«¸¦ Å©¶ó¿ìµå ¼Ò½Ì ¹æ½ÄÀ¸·Î ÇØ°áÇÑ´Ù. ÇÑ ½ÇÇè¿¡¼­, ÀÌ ½Ã½ºÅÛÀº ¹é°ú»çÀü ¹æ½ÄÀ¸·Î ±â»ç¸¦ ÀÛ¼ºÇϱâ À§ÇØ, ¾Æ¸¶Á¸ ¸ÅÄ¿´ÏÄà ÅÍÅ©Amazon Mechanical Turk ¿Â¶óÀÎ Àη½ÃÀåÀ» ÅëÇÑ ¿Â¶óÀÎ ±Ù¹«ÀÚ¸¦ È°¿ëÇß´Ù. ÀÌ ½Ã½ºÅÛÀº ¸ÕÀú ¿Â¶óÀÎ ±Ù¹«Àڵ鿡°Ô °¢ ±â»çÀÇ ´ëÇÑ °³¿ä¸¦ Á¦ÃâÇϵµ·Ï ¿äûÇß´Ù. ±×·± ´ÙÀ½ ´Ù¸¥ ±Ù¹«Àڵ鿡°Ô °¢ °³¿ä¿¡ ´ëÇÑ °ü·Ã »ç½ÇÀ» ãµµ·Ï ¿äûÇß´Ù. ´ÙÀ½À¸·Î, ´Ù¸¥ Á÷¿øµé¿¡°Ô ±×·¯ÇÑ ÆÑÆ®¸¦ »ç¿ëÇÏ¿© ÀÏ°üµÈ ´Ü¶ôÀ» ¾²µµ·Ï ¿äûÇß°í, ¸¶Áö¸·À¸·Î ½Ã½ºÅÛÀÌ °¢ ´Ü¶ôÀ» ¸ð¾Æ ¿ÏÀüÇÑ ±â»ç¸¦ ÀÛ¼ºÇß´Ù. Èï¹Ì·Ó°Ôµµ µ¶ÀÚ´Â Æò±ÕÀûÀ¸·Î ÇÑ »ç¶÷ÀÌ ¾´ ±â»çº¸´Ù ÀÌ ¹æ¹ýÀ¸·Î ÀÛ¼ºµÈ ±â»ç¿¡ ´õ ÈÄÇÑ Á¡¼ö¸¦ Áá´Ù.


ÀÌÁ¦ ±â°è°¡ ¼öÇàÇÒ ¼ö ÀÖ´Â ¿ªÇÒÀ» ÀÌÇØÇß´Ù¸é, Áö´ÉÀûÀ¸·Î ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ½´ÆÛ¸¶Àεå(ȸ»ç ¶Ç´Â ÆÀ°ú °°Àº)ÀÇ ¼³°è¸¦ ¾Ë¾Æº¸ÀÚ. ÀÌ·¯ÇÑ ½´ÆÛ¸¶Àε带 ¼³°èÇÏ·Á´Â °æ¿ì ÇÊ¿äÇÑ ÇÁ·Î¼¼½º´Â 5°¡ÁöÀÌ´Ù.


°³ÀÎÀ̵ç Áý´ÜÀÌµç ¸ðµç ¸¶Àεå´Â ¾Æ·¡ÀÇ 5°¡ÁöÀÇ ÀϺΠ¶Ç´Â ÀüºÎ¸¦ ¼öÇàÇØ¾ß ÇÑ´Ù.


1. ½ÇÇàÀÇ °¡´É¼ºÀ» ã¾Æ¶ó
2. ÃëÇÒ ÇൿÀ» °áÁ¤Ç϶ó
3. ¿ÜºÎ ¼¼°è¸¦ °¨ÁöÇ϶ó
4. °ú°Å¸¦ ±â¾ïÇ϶ó
5. °æÇèÀ» ÅëÇØ ÇнÀÇ϶ó


»ç¶÷, ÄÄÇ»ÅÍ, Áý´Ü¿¡ »ó°ü¾øÀÌ Áö´ÉÀûÀ¸·Î ÀÛµ¿ÇÏ´Â °³Ã¼´Â ÀÌ·¯ÇÑ 5°¡Áö¸¦ ¼öÇàÇØ¾ß ÇÑ´Ù.


¸»·Ð ±³¼ö´Â ¡°ÄÄÇ»ÅÍ´Â Ç×»ó ±×·± °ÍÀº ¾Æ´ÏÁö¸¸ Á¾Á¾ ½´ÆÛ¸¶Àε带 ´õ ¶È¶ÈÇÏ°Ô ¸¸µå´Â »õ·Î¿î ¹æ½ÄÀ¸·Î ÀÌ·¯ÇÑ ¸ðµç ÀÏÀ» ¼öÇàÇÒ ¼ö ÀÖµµ·Ï ¸¸µç´Ù.¡±¶ó°í ¸»ÇÑ´Ù.


¸»·Ð ±³¼ö´Â ÇǾØÁö¿Í À¯»çÇÑ ÇÑ ´ëÇü ¼ÒºñÀç ȸ»ç¸¦ ´ë»óÀ¸·Î Àü·« ±âȹÀÇ »ç·Ê¸¦ ¼Ò°³ÇÑ´Ù. ¿À´Ã³¯ ´ë±â¾÷¿¡¼­ÀÇ ±â¾÷ Àü·« ±âȹ¿¡´Â »ó´ëÀûÀ¸·Î ¼Ò±Ô¸ðÀÇ ±×·ì - ÁÖ·Î °íÀ§ ÀÓ¿ø, ´ã´ç Á÷¿ø, ÀϺΠ¿ÜºÎ ÄÁ¼³ÅÏÆ® - ÀÌ Âü¿©ÇÑ´Ù. ±×·¯³ª ±â¼úÀ» »ç¿ëÇÏ¿© ÈξÀ ´õ ¸¹Àº »ç¶÷µéÀ» Âü¿©½ÃÅ°°í ±â°è°¡ »ý°¢Çϵµ·Ï ÇÒ ¼ö ÀÖ´Ù¸é ¾î¶³±î?


ÇÁ·Î¼¼½º 1 : ½ÇÇàÀÇ °¡´É¼ºÀ» ã¾Æ¶ó
ÄÄÇ»ÅÍÀÇ °¡Àå Áß¿äÇÑ ¿ªÇÒ Áß Çϳª´Â ±×°ÍÀÌ ´õ ¸¹Àº »ç¶÷µéÀÌ ÇÔ²² »ý»êÀûÀ¸·Î »ý°¢ÇÒ ¼ö ÀÖ´Â Ä¿¹Â´ÏÄÉÀÌ¼Ç µµ±¸¶ó´Â °ÍÀÌ´Ù. Àü·« ±âȹ ÇÁ·Î¼¼½º¿¡¼­ À̸¦ ¼öÇàÇÏ·Á¸é À¥À» ÅëÇØ ¿Â¶óÀÎ ÄÜÅ×½ºÆ®¸¦ È°¿ëÇÏ¸é µÈ´Ù. °¢ Á¶Á÷¿¡ µû¶ó ¿©·¯ °¡Áö ¼öÁØ¿¡¼­ º°µµÀÇ ¿Â¶óÀÎ °æ¿¬ ´ëȸ¸¦ ¿­ ¼öµµ ÀÖ´Ù. ¿¹¸¦ µé¾î, ÇǾØÁö°¡ ÀÌ Á¢±Ù¹ýÀ» »ç¿ëÇÒ °æ¿ì ÆÒƾPantene ¼¤Çª, Çìµå¾Ø¼ñ´õHead&Shoulders ¼¤Çª, ŸÀ̵åTide ¼¼Å¹ ¼¼Á¦¿Í °°Àº °¢ ºê·£µå¿¡ ´ëÇØ º°µµ·Î ÄÜÅ×½ºÆ®¸¦ °³ÃÖÇÒ ¼ö ÀÖ´Ù. ¶ÇÇÑ Çì¾î Äɾî¿Í ¼¶À¯ ÄÉ¾î µî °¢ »ç¾÷ ´ÜÀ§ÀÇ ºê·£µå Àü·«À» °áÇÕÇÏ´Â ¹æ¹ý¿¡ ´ëÇÑ º°µµÀÇ ÄÜÅ×½ºÆ®µµ °³ÃÖÇÒ ¼ö ÀÖ´Ù. ±×¸®°í »ç¾÷ ´ÜÀ§ Àü·«À» Àüü ±â¾÷ Àü·«À¸·Î °áÇÕÇϱâ À§ÇÑ ¶Ç ÇϳªÀÇ ÄÜÅ×½ºÆ®µµ °¡´ÉÇÏ´Ù.


°¢ ÄÜÅ×½ºÆ®¸¦ ¸ðµç ÀÓÁ÷¿øµé¿¡°Ô °ø°³ÇÏ°í, ÄÜÅ×½ºÆ®¿¡ Âü¿©ÇÑ »ç¶÷Àº ´©±¸³ª Àü·« ¿É¼ÇÀ» Á¦¾ÈÇÒ ¼ö ÀÖÀ¸¸ç ´Ù¸¥ »ç¶÷µéÀº ¾ÆÀ̵ð¾î¿¡ ´ëÇØ ÀÇ°ßÀ» ´õÇϰųª ±× ¾ÆÀ̵ð¾î·ÎºÎÅÍ µµ¿òÀ» ¾òÀ» ¼öµµ ÀÖ´Ù. °á±¹ °¢ ÄÜÅ×½ºÆ®¿¡¼­ °¡Àå ¿ùµîÇÑ Àü·«ÀÌ ¼±ÅÃµÉ °ÍÀÌ´Ù. ±×·¯³ª Àü·«À» ¼ö¸³ÇÏ´Â °úÁ¤¿¡¼­ ¿©·¯ °¡Áö ´Ù¾çÇÑ ¿É¼ÇÀ» °í·ÁÇÏ´Â °ÍÀÌ Áß¿äÇÏ´Ù.


ÀÌ ÇÁ·Î¼¼½º¸¦ ¸¹Àº »ç¶÷µé¿¡°Ô °³¹æÇÏ¸é ³î¶ø°í »õ·Î¿î ¿É¼ÇÀÌ ¹ß»ýÇÒ ¼öµµ ÀÖ´Ù. ¿¹¸¦ µé¾î, ÀüÅëÀûÀÎ ±â¾÷ Àü·« ±âȹ ÇÁ·Î¼¼½º¿¡ Æ÷ÇÔµÇÁö ¾Ê¾Ò´ø Àþ°í ÃֽŠ±â¼ú¿¡ Á¤ÅëÇÑ Á÷¿øµéÀÌ, ¼¿ÇǸ¦ À¥ »çÀÌÆ®¿¡ ¿Ã¸®´Â °³ÀÎ °í°´À» À§ÇØ Æ¯º°È÷ °í¾ÈµÈ ÇǺΠ¹× ´« È­Àå°ú °ü·ÃµÈ »õ·Î¿î È­ÀåÇ° °³³äÀ» Á¦¾ÈÇÒ ¼öµµ ÀÖ´Ù.


ÇÁ·Î¼¼½º 2 : ÃëÇÒ ÇൿÀ» °áÁ¤Ç϶ó
Àü·«Àû °¡´É¼ºÀ» âÃâÇÏ´Â µ¥ ´õ ¸¹Àº »ç¶÷µéÀ» Âü¿©½Ãų ¶§ ¹ß»ýÇÏ´Â ÀÌÁ¡µé Áß Çϳª´Â ÈξÀ ´õ ¸¹Àº °¡´É¼ºÀ» ¾òÀ» ¼ö ÀÖ´Ù´Â °ÍÀÌ´Ù. ±×·¯³ª ¾î¶² °¡´É¼ºÀÌ °¡Àå À¯¸ÁÇÑÁö °áÁ¤Çϱâ À§ÇØ ±×°ÍµéÀ» ¸ðµÎ Æò°¡ÇØ¾ß Çϸç, »õ·Î¿î ±â¼úÀº ÈξÀ ´õ ¸¹Àº »ç¶÷µé°ú ´õ ¸¹Àº Á¾·ùÀÇ Àü¹®°¡µéÀÌ Æò°¡ °úÁ¤¿¡ ½±°Ô Âü¿©ÇÒ ¼ö ÀÖµµ·Ï ÇØÁØ´Ù. ¿¹¸¦ µé¾î, ÇǾØÁö´Â Á¦Á¶ ¿£Áö´Ï¾îµéÀÌ ±â¼úÀûÀ¸·Î Á¦Ç° Á¦Á¶°¡ °¡´ÉÇÑÁö Æò°¡ÇÏ°í, ¿î¿µ °ü¸®ÀÚ°¡ Á¦Ç° °¡°ÝÀ» ÃßÁ¤ÇÏ°Ô, ±×¸®°í ¿ÜºÎ ½ÃÀå Á¶»çÀÚµéÀÌ ´Ù¸¥ °¡°Ý´ëÀÇ ÇØ´ç Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä¸¦ ¿¹ÃøÇϱ⸦ ¿øÇÒ ¼ö ÀÖ´Ù.


¾î¶² °æ¿ì¿¡´Â ÀÌ·¯ÇÑ Áú¹®¿¡ ¸¹Àº »ç¶÷µéÀÇ ÀÇ°ßÀ» Á¶ÇÕÇÒ °¡Ä¡°¡ ÀÖ´Ù. ¿¹¸¦ µé¾î, ÇǾØÁö´Â Á¦Ç° ¼ö¿ä¸¦ ¿¹ÃøÇϱâ À§ÇØ ¿Â¶óÀÎ ¿¹Ãø ½ÃÀåÀ» È°¿ëÇÒ ¼ö ÀÖ´Ù. ÀÌ·¯ÇÑ ½ÃÀåÀº ÀÌ¹Ì ¿µÈ­ ÈïÇà ¼öÀÔ, ¹Ì±¹ ´ëÅë·É ¼±°Å ½ÂÀÚ ¹× ±âŸ ¸¹Àº °ÍµéÀ» ¼º°øÀûÀ¸·Î ¿¹ÃøÇÏ´Â µ¥ »ç¿ëµÇ¾ú´Ù. ½ÇÁ¦ ¹Ì·¡ ½ÃÀå°ú ¸¶Âù°¡Áö·Î ¿¹Ãø ½ÃÀå¿¡¼­ »ç¶÷µéÀº ¹Ì·¡ »ç°Ç¿¡ ´ëÇÑ ¿¹Ãø ºÐÀ» »ç°í ÆÈ ¼ö ÀÖ´Ù. ¿¹¸¦ µé¾î ÆÒƾ ¼¤ÇªÀÇ Àü ¼¼°è ¸ÅÃâ¾×ÀÌ ¿¬°£ 18¾ï ´Þ·¯¿¡¼­ 19¾ï ´Þ·¯ »çÀ̶ó°í »ý°¢Çϸé, Âü¿©ÀÚ´Â ±× ¿¹ÃøÄ¡ÀÇ ÀÏÁ¤ºÐÀ» »ì ¼ö ÀÖ´Ù. ¿¹ÃøÀÌ ¸Â´Ù¸é, ¼ÒÀ¯ÇÑ ±× ÀÏÁ¤ºÐ¿¡ ´ëÇØ (¸»ÇÏÀÚ¸é) 1´Þ·¯¾¿ ¾ò°Ô µÉ °ÍÀÌ´Ù. ±×·¯³ª ¿¹ÃøÀÌ Æ²¸®¸é ¾Æ¹« °Íµµ ¾òÁö ¸øÇÑ´Ù. Áï, ¿¹Ãø ½ÃÀåÀ» ÅëÇÑ ÃÖÁ¾ °¡°ÝÀ¸·Î ¸ÅÃâÀÇ ¹üÀ§¿¡ ´ëÇÑ È®·üÀ» ¾òÀ» ¼ö ÀÖ´Ù.


ÇÁ·Î¼¼½º 3 : ¿ÜºÎ ¼¼°è¸¦ °¨ÁöÇ϶ó
ÁÁÀº Àü·«¾ÈÀ» ¼ö¸³Çϱâ À§ÇØ ÇÊ¿äÇÑ ÇÙ½ÉÀº ¿ÜºÎ ¼¼°è¿¡¼­ ¹ú¾îÁö´Â ÀÏÀ» È¿°úÀûÀ¸·Î °¨ÁöÇÒ ¼ö ÀÖ´Â ´É·ÂÀÌ´Ù. °í°´ÀÌ Áö±Ý ¿øÇÏ´Â °ÍÀº ¹«¾ùÀΰ¡? °æÀï ¾÷üµéÀº ¹«¾ùÀ» ÇÏ°í Àִ°¡? ¾÷°è¸¦ º¯È­ ½Ãų ¼ö ÀÖ´Â »õ·Î¿î ±â¼úÀº ¹«¾ùÀΰ¡? ¿À´Ã³¯ °¨Áö ±â´ÉÀ» Çâ»ó½ÃÅ°´Â µ¥ °¡Àå ´«¿¡ ¶ç´Â ¹æ¹ýÀº ºòµ¥ÀÌÅÍ¿Í µ¥ÀÌÅÍ ºÐ¼®ÀÌ´Ù.


¿¹¸¦ µé¾î, ÇǾØÁö´Â ¿Â¶óÀÎ ¼Ò¼È ³×Æ®¿öÅ©¿¡¼­ ÀÚ»ç Á¦Ç°¿¡ ´ëÇÑ ±àÁ¤ÀûÀÌ°í ºÎÁ¤ÀûÀÎ ÀÇ°ßÀ» ºÐ¼®ÇÏ¿© Á¦Ç°¿¡ ´ëÇÑ °í°´ÀÇ °¨¼ºÀÌ ¾î¶»°Ô º¯ÇÏ´ÂÁö ÃøÁ¤ÇÒ ¼ö ÀÖ´Ù. Á¦Ç°¿¡ ´ëÇÑ ¿©·¯ °¡Áö °¡°ÝÀ¸·Î ¿Â¶óÀÎ ½ÇÇèÀ» ¼öÇàÇÒ ¼öµµ ÀÖ´Ù. ¶ÇÇÑ °í°´ÀÌ ÇǾØÁö Á¦Ç° ´ë °æÀï¾÷üÀÇ Á¦Ç°À» º¸´Â µ¥ ¼ÒºñÇÑ ½Ã°£À» ºÐ¼®Çϱâ À§ÇØ ¼Ò¸ÅÁ¡¿¡ ºñµð¿À ¹× ÅÍÄ¡ Ç÷ξ ¼³Ä¡ÇÏ¿© ÆǸŠº¯°æ¿¡ ´ëÇÑ Á¶±â °æ°í¸¦ ¾òÀ» ¼öµµ ÀÖ´Ù.


ÇǾØÁö´Â ¾Æ¸¶Á¸ÀÌ ÀÌ¹Ì Çß´ø °ÍÀ» µû¶óÇÒ ¼öµµ ÀÖ´Ù. ´ë¿ë·®ÀÇ µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© °í°´ÀÇ °¡°Ý, ±¤°í, Ãßõ¿¡ ´ëÇÑ °í°´ ¹ÝÀÀ µî ºñÁî´Ï½ºÀÇ ¿©·¯ ºÎºÐ¿¡ ´ëÇÑ »ó¼¼ÇÑ ¸ðµ¨À» °³¹ßÇÏ°í Àç°í Á¤Ã¥, ¹è¼Û ¹æ¹ý, â°í À§Ä¡¿¡ µû¶ó º¯ÇÏ´Â °ø±Þ¸Á ºñ¿ëÀ» ÆľÇÇÒ ¼ö ÀÖ´Ù. ÀÌ·¯ÇÑ µµ±¸¸¦ »ç¿ëÇϸé ÄÄÇ»ÅÍ°¡ ¼ö¸¦ È°¿ëÇÏ¿© Àü·« ±âȹÀÇ ¼ö¸¹Àº ¾çÀû ¾÷¹«¸¦ ´ë½Å ¼öÇàÇÒ ¼ö ÀÖÀ¸¸ç »ç¶÷Àº ÀÏ¹Ý Áö´ÉÀ» »ç¿ëÇÏ¿© º¸´Ù Á¤¼ºÀû ºÐ¼®À» ¼öÇàÇÒ ¼ö ÀÖ´Ù.


ÇÁ·Î¼¼½º 4 : °ú°Å¸¦ ±â¾ïÇ϶ó
½´ÆÛ¸¶Àε尡 ´õ ³ªÀº Àü·«Àû °èȹÀ» ¼¼¿ì´Â µ¥ ÀÖ¾î, ±â¼úÀ» È°¿ëÇÏ´Â ¶Ç ´Ù¸¥ ¹æ¹ýÀº ´Ù¸¥ »ó´ë°¡ À¯»çÇÑ »óȲ¿¡¼­ °Þ¾ú´ø ÁÁÀº ¾ÆÀ̵ð¾î¸¦ ±â¾ïÇϵµ·Ï µ½´Â °ÍÀÌ´Ù. ¿¹¸¦ µé¾î, Àü·«Àû Á¦¾ÈÀ» »ý¼ºÇϱâ À§ÇÑ ÀÀ¿ë ÇÁ·Î±×·¥¿¡ ³»ÀçµÈ ¼ÒÇÁÆ®¿þ¾î Á¶¼ö´Â ´ÙÀ½°ú °°Àº ÀϹÝÀû Àü·«À» ÀÚµ¿ÀûÀ¸·Î Á¦¾ÈÇÒ ¼ö ÀÖ´Ù.


- °í°´À̳ª °ø±Þ¾÷ü°¡ ¼öÇàÇÑ ¾÷¹« Áß ÀϺθ¦ ÅëÇÕ½ÃÅ°±â


- ÇÁ¸®·£¼­ ¶Ç´Â Àü¹®¾÷ü¿¡°Ô ³»ºÎ ¾÷¹«¸¦ ´õ ¸¹ÀÌ ¾Æ¿ô¼Ò½ÌÇϱâ


- °ü·Ã ½ÃÀå ºÐ¾ß, Àα٠Áö¿ª ¶Ç´Â °í°´ÀÌ ÀÚÁÖ ¹æ¹®ÇÏ´Â ´Ù¸¥ ½ÃÀåÀ¸·Î À̵¿Çϱâ


ÀÌ·¯ÇÑ ¿É¼Ç Áß Çϳª¸¦ ¼±ÅÃÇÏ¸é ½Ã½ºÅÛÀº ÇØ´ç À¯ÇüÀÇ Àü·«¿¡ ÇÊ¿äÇÑ ¼¼ºÎ »çÇ×À» Æ÷ÇÔÇÏ´Â ÅÛÇø´À» ÀÚµ¿À¸·Î Á¦°øÇÒ ¼ö ÀÖ´Ù.


´Ù¸¥ Á¶Á÷À̳ª ¼³Á¤¿¡¼­ È°¿ëÇß´ø ÁÁÀº Àü·«À» ±â¾ïÇؼ­ ¼ÒÇÁÆ®¿þ¾î Á¶¼ö´Â »ç¿ëÀÚ ¼³Á¤¿¡ ´ëÇÑ »õ·Î¿î Àü·«À» »ý¼ºÇÏ´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ´Ù. ¿¹¸¦ µé¾î ¼¿ÇǸ¦ »ç¿ëÇÏ¿© È­ÀåÇ°À» »ç¿ëÀÚ¿¡°Ô ¸ÂÃç ÁÖ´Â Àü·«ÀÌ ¼º°øÇß´Ù¸é ¼ÒÇÁÆ®¿þ¾î Á¶¼ö´Â °í°´ÀÌ ½º¸¶Æ®ÆùÀ» »ç¿ëÇÏ¿© ÇǾØÁöÀÇ ´Ù¸¥ Á¦Ç° - ¼¤Çª, Ä¡¾à, ¼¼Å¹ ¼¼Á¦, °¨ÀÚ Ä¨ µî - À» »ç¿ëÀÚ¿¡°Ô ¸ÂÃçÁÖ´Â À¯»çÇÑ Àü·«À» Á¦¾ÈÇÒ ¼ö ÀÖ´Ù. ¹°·Ð ÀÌ·¯ÇÑ Á¶ÇÕÀÇ ´ëºÎºÐÀº ¾î¸®¼®°Å³ª ºñÇö½ÇÀûÀ̾ ¸Å¿ì »¡¸® °í»çµÉ ¼öµµ ÀÖÁö¸¸ ÀϺδ ³î¶ø°Ôµµ À¯¿ëÇÒ ¼ö ÀÖ´Ù. ¾î¸®¼®Àº ¿É¼Ç¿¡¼­ ¶§·Î´Â ÁÁÀº ¾ÆÀ̵ð¾î°¡ ¹ß»ýÇϱ⵵ ÇÑ´Ù!


¿¹¸¦ µé¾î, 2000³â´ë ÃÊ ÇǾØÁö´Â ÇÁ¸µ±Û½ºPringles °¨ÀÚĨ¿¡ Àç¹ÌÀÖ´Â ±×¸²°ú ´Ü¾î¸¦ ÀμâÇÏ´Â ÇÁ·Î¼¼½º¸¦ °³¹ßÇß´Ù. ÀÌ ±â¼úÀ» »ç¿ëÇϸé, °í°´Àº ÀÚ½ÅÀÌ ÁöÁ¤ÇÑ À̹ÌÁö·Î ¹Ì¸® ÀμâµÈ ÇÁ¸µ±Û½º¸¦ ±¸ÀÔÇÒ ¼ö ÀÖ´Ù.


ÇÁ·Î¼¼½º 5 : °æÇèÀ» ÅëÇØ ÇнÀÇ϶ó
½Ã½ºÅÛÀÌ ¿À·§µ¿¾È °è¼Ó »ç¿ëµÇ¸é, ½´ÆÛ¸¶Àε尡 °æÇèÀ» ÅëÇØ Á¡Á¡ ´õ È¿°úÀûÀÌ µÈ´Ù´Â °ÍÀ» ¾Ë ¼ö ÀÖ´Ù. ¿¹¸¦ µé¾î, ´ëºÎºÐÀÇ »ç¶÷µéÀÌ Ãʱ⠴ܰ迡¼­´Â ÀνÄÇÏÁö ¸øÇß´ø Àü·«Àû ¾ÆÀ̵ð¾î¸¦ ÀνÄÇÏ´Â µ¥ ½´ÆÛ¸¶Àε尡 µµ¿òÀÌ µÉ ¼ö ÀÖ´Ù. ½ºÆ¼ºê À⽺¿Í ºô °ÔÀÌÃ÷°¡ Áö±Ý ¿ì¸®°¡ °³Àοë ÄÄÇ»ÅͶó°í ºÒ·¶´ø ±â°è¸¦ °³¹ßÇß´ø 1970³â´ë ´ëºÎºÐÀÇ »ç¶÷µéÀº ÀÌ ÀÌ»óÇÏ°í ¾î»öÇÑ ÀåÄ¡°¡ ¾ÕÀ¸·Î ¼ö½Ê ³â µ¿¾È °¡Àå Çõ½ÅÀûÀÌ°í ¿µÇâ·Â ÀÖ´Â Á¦Ç°ÀÌ µÇ¸®¶õ °ÍÀ» ÀüÇô ¸ô¶ú´Ù.


ÁøÈë¿¡¼­ ´ÙÀ̾Ƹóµå¸¦ ³õÄ¡Áö ¾Ê°í ¾ÆÀ̵ð¾î¸¦ ºü¸£°Ô ÇÊÅ͸µÇÏ´Â °ÍÀº ½±Áö ¾Ê´Ù. ±×·¯³ª »ç¶÷µéÀÌ ±â¼ú ¹ßÀü°ú ±âŸ ȹ±âÀûÀÎ µ¹Æı¸¸¦ ¾ó¸¶³ª Á¤È®ÇÏ°í ºü¸£°Ô ¿¹ÃøÇÏ´ÂÁö¸¦ ¿À·£ ½Ã°£ ü°èÀûÀ¸·Î ÃßÀûÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ´É·ÂÀ» º¸À¯ÇÑ ºñ¹üÇÑ »ç¶÷µéÀ» ½Äº°Çس»´Â °ÍÀÌ °¡´ÉÇÏ´Ù. ÀÌÈÄ ¿ì¸®´Â À̵鿡°Ô ¿ì¸®°¡ °ÅºÎÇÒ ¼öµµ ÀÖÁö¸¸ ±×µéÀÌ ´Ù¸£°Ô º¸´Â »õ·Î¿î ¾ÆÀ̵ð¾î¸¦ »ìÆì´Þ¶ó°í ¿äûÇÒ ¼ö ÀÖ´Ù.


¶Ç ´Ù¸¥ Èï¹Ì·Î¿î °¡´É¼ºÀº ÇнÀ ·çÇÁlearning loop¸¦ »ç¿ëÇÏ´Â °ÍÀÌ´Ù. ÀÌ°ÍÀº óÀ½¿¡´Â Àΰ£ Àü¹®°¡°¡ Àü·«¾ÈÀ» ¼öµ¿À¸·Î Æò°¡Çϱ⠽ÃÀÛÇÏÁö¸¸, ÀÌÈÄ¿¡´Â ±â°èÀÇ ¿¹Ãø ´É·ÂÀÌ Àΰ£º¸´Ù ÁÁ¾ÆÁö¸é¼­ Á¡Â÷ ÀÌ ÀÛ¾÷À» ±â°è°¡ Á¡Á¡ ´õ ¸¹ÀÌ ¼öÇàÇÏ´Â °ÍÀÌ´Ù. ÀϹÝÀûÀ¸·Î °¡°Ýº¸´Ù´Â Ç°Áú °æÀïÀ» ½ÃµµÇÏ´Â ÇǾØÁö¿Í °°Àº ȸ»ç¿¡¼­, Á¦Ç°À» Æò°¡ÇÏ´Â Àü¹®°¡µéÀº ÀϹÝÀûÀ¸·Î Àú·ÅÇÑ °¡°ÝÀ» °­Á¶ÇÏ´Â Àü·«À» °ÅºÎÇÑ´Ù. ÀÌ¿¡ Àΰ£ ÇÁ·Î±×·¡¸ÓµéÀº Àúºñ¿ë Àü·«À» ¸í½ÃÀûÀ¸·Î °É·¯³»´Â ÇÁ·Î±×·¥À» °³¹ßÇÒ °ÍÀÌ´Ù. ±×·¯³ª ±â°è ÇнÀ ÇÁ·Î±×·¥Àº Àü¹®°¡µéÀÌ ÀÌ·¯ÇÑ À¯ÇüÀÇ Àü·«À» °ÅºÎÇÑ´Ù´Â °ÍÀ» ÀνÄÇÏ¿© ±×·¯ÇÑ Àü·«¿¡ ºÎÇÕµÇÁö ¾Ê´Â ÇൿÀ» ¸»Çϱ⠽ÃÀÛÇÒ °ÍÀÌ´Ù. Àü¹®°¡°¡ ÃæºÐÇÑ ½Ã°£À» °¡Áö°í ±× ¸»¿¡ µ¿ÀÇÇϸé ÇÁ·Î±×·¥Àº ¹¯´Â °ÍÀ» ¸ØÃß°í ÀÚµ¿À¸·Î ±×·¯ÇÑ À¯»çÇÑ ÇൿµéÀ» °è¼Ó ÇÊÅ͸µÇÒ °ÍÀÌ´Ù.


ºñÁî´Ï½º Àü·«Àº ½º¸¶Æ® ¸Ó½ÅÀÌ Àΰ£°ú ÇÔ²² ½´ÆÛ¸¶Àε带 ¸¸µé¾î, Áö±Ý±îÁö Àΰ£¸¸À¸·Î ±¸¼ºµÈ °Íº¸´Ù ÈξÀ ´õ ¿ùµîÇÏ°Ô ÇØ°áÇÒ ¼ö¸¹Àº °Íµé Áß ÇϳªÀÏ »ÓÀÌ´Ù. ½´ÆÛ¸¶Àε带 ÅëÇØ ¿ì¸®´Â ¿À´Ã³¯ÀÇ ´õµò Àα¸ ¼ºÀå·ü, ¾öû³­ ½Ç¾÷, ºü¸¥ °æÁ¦ ¼ºÀå µîÀÇ À̽´¸¦ ¿ø¸¸ÇÏ°Ô ÇØ°áÇÒ ¼öµµ ÀÖ´Ù. ¿©±â¿¡¼­ °¡Àå Å« µµÀü °úÁ¦´Â Àΰ£ÀÌ ±â°è Áö´ÉÀ» È°¿ëÇÏ°í Àΰ£ÀÇ ´É·ÂÀ» ±Ø´ëÈ­ÇÒ ¼ö ÀÖ´Â ±â°è¸¦ ¸¸µé ¼ö ÀÖ´Â ±â¼úÀ» ¸¶·ÃÇÏ´Â °ÍÀÌ´Ù. ¸¹Àº °æ¿ì ÀÌ°ÍÀº ¹Ì·¡ÀÇ ½´ÆÛ¸¶ÀεåµéÀÌ ÀÏ»óÀûÀ¸·Î Àΰ£À̳ª ±â°èÀÇ ¾î¶² ´ÜÀÏ ±×·ìµµ ºÒ°¡´ÉÇß´ø ÀϵéÀ» ó¸®ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â °ÍÀÌ´Ù.


ÀÌ·¯ÇÑ ±â¼ú°ú ºñÀüÀ» ±â¹ÝÀ¸·Î ¿ì¸®´Â ½´ÆÛ¸¶Àε忡 ´ëÇÑ 2°¡Áö¸¦ ¿¹ÃøÇÒ ¼ö ÀÖ´Ù.


ù°, 2025³â±îÁö »çÀ̹öÀΰ£ÀÇ ÄÁ¼³Æà ȸ»ç¸¦ ÅëÇØ ¼­ºñ½º·Î Á¦°øµÉ °ÍÀÌ´Ù.


½Ã½ºÅÛÀÇ º¹À⼺°ú ±× ½Ã½ºÅÛÀÌ Ã³¸®ÇÏ´Â ¾÷¹«ÀÇ Æ¯¼ºÀÌ ÀϹÝÀûÀÎ Á¡À» °í·ÁÇÒ ¶§, ±â¾÷µéÀÌ ÀÌ ¸ñÀûÀ» À§ÇØ µ¶ÀÚÀûÀ¸·Î ½Ã½ºÅÛÀ» °³¹ßÇÒ °Í °°Áö´Â ¾Ê´Ù. ´ë½Å ¿À´Ã³¯ÀÇ ÄÁ¼³Æà ȸ»ç ¶Ç´Â ÇâÈÄ À̵éÀÇ °æÀï ¾÷ü°¡ ÀÌ·¯ÇÑ ±â´É ´ëºÎºÐÀ» ¼­ºñ½º·Î Á¦°øÇÒ °ÍÀÌ´Ù. ÀÌ È¸»ç´Â ´Ù¾çÇÑ Àü·«Àû °¡´É¼ºÀ» ½Å¼ÓÇÏ°Ô ÃßÃâÇÏ°í Æò°¡ÇÒ ¼ö ÀÖ´Â Àü¹® ÀηÂÇ®À» °®Ãß°í ÀÖÀ» °ÍÀÌ´Ù. À̶§ ÇÁ·Î¼¼½º´Â ÀϺΠ¾÷¹«¸¦ ÀÚµ¿È­ÇÏ°í ±âŸ ¾÷¹«µµ °ü¸®ÇÒ °ÍÀÌ´Ù. ÀÌ·¯ÇÑ ¡®Àü·« ½Ã½ºÅÛ¡¯Àº Àΰ£-ÄÄÇ»ÅÍÀÇ ½´ÆÛ¸¶Àε带 È°¿ëÇÏ¿© ÇÑ ±â¾÷¿¡ ½ÇÇà °¡´ÉÇÑ ¼ö¹é¸¸ °¡ÁöÀÇ Àü·«À» »ý»êÇÏ°í Æò°¡ÇÑ´Ù. ½Ã°£ÀÌ Áö³ª¸é¼­ ÄÄÇ»ÅÍ°¡ Á¡Á¡ ´õ ¸¹Àº ¾÷¹«¸¦ ¼öÇàÇÏ°Ô µÇ°í, »ç¶÷Àº ¿©ÀüÈ÷ ÀÌ ÇÁ·Î¼¼½ºÀÇ ÇÙ½É ºÎºÐ¿¡ Âü¿©ÇÏ°Ô µÉ °ÍÀÌ´Ù.


µÑ°, Àΰ£-ÄÄÇ»ÅÍ ½´ÆÛ¸¶Àεå´Â ¸ðµç Á¾·ùÀÇ ¾î·Á¿î ºñÁî´Ï½º ¹× »çȸÀû ¹®Á¦¸¦ ÇØ°áÇÏ´Â µ¥ È°¿ëµÉ °ÍÀÌ´Ù.


ÄÄÇ»ÅÍ´Â Àü¹® Áö´ÉÀ» »ç¿ëÇÏ¿© ¹®Á¦ÀÇ ÀϺθ¦ ÇØ°áÇÏ°í ¹®Á¦ÀÇ ³ª¸ÓÁö´Â »ç¶÷µéÀÌ ÀÏ¹Ý Áö´ÉÀ» È°¿ëÇÏ¿© ÇØ°áÇÒ °ÍÀÌ´Ù. ÀÌ °úÁ¤ ¼Ó¿¡¼­, ÄÄÇ»ÅÍ´Â Áö±Ý±îÁö ºÒ°¡´ÉÇß´ø ¼ö¾øÀÌ ¸¹Àº Àΰ£µéÀÇ Áý´ÜÀ» Âü¿©½ÃÅ°°í Á¶Á¤ÇÒ ¼ö ÀÖ´Ù. »õ·Î¿î ÁÖÅÃ, ½º¸¶Æ®Æù, °øÀå, µµ½Ã, ±³À° ½Ã½ºÅÛ¿¡¼­ Å×·¯ ¹æÁö, ÀÇ·á óÁö °èȹ ¼ö¸³¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ÀÀ¿ë ÇÁ·Î±×·¥µéÀÌ µîÀåÇÒ °ÍÀÌ´Ù. »ç½Ç»ó °¡´É¼ºÀº °ÅÀÇ ¹«Á¦ÇÑÀ̶ó°í ÇÒ ¼ö ÀÖ´Ù.


* *

References List :
1. MIT Sloan Management Review. Summer 2018. Thomas W. Malone. How Human-Computer ¡®Superminds¡¯ are Redefining the Future of Work.
https://sloanreview.mit.edu/article/how-human-computer-superminds-are-redefining-the-future-of-work/


2. Superminds: The Surprising Power of People and Computers Thinking Together (Little Brown & Company, 2018). 2018. Thomas W. Malone.
https://www.amazon.com/Superminds-Surprising-Computers-Thinking-Together/dp/0316349135/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=


3. Rethink Robotics (blog), November 10, 2014. Rodney Brooks. Artificial Intelligence Is a Tool, Not a Threat.


4. S. Armstrong and K. Sotala. How We¡¯re Predicting AI ? or Failing Toin ¡°Beyond AI: Artificial Dreams,¡± ed. J. Romportl, P. Ircing, E. Zackova, M. Polak, and R. Schuster (Pilsen, Czech Republic: University of West Bohemia, 2012): 52-75.


5. N. Bostrom, Superintelligence: Paths, Dangers, Strategies(Oxford, U.K.: Oxford University Press, 2014).


6. M. Minsky, ¡°Society of Mind¡± (New York: Simon and Schuster, 1988).


7. L. Biewald, ¡°Why Human-in-the-Loop Computing Is the Future of Machine Learning,¡± Data Science (blog), Nov. 13, 2015, www.computerworld.com


8. H.J. Wilson, P. Daugherty, and P. Shukla, ¡°How One Clothing Company Blends AI and Human Expertise,¡± Nov. 21, 2016, http://hbr.org


9. S. Wininger, ¡°The Secret Behind Lemonade¡¯s Instant Insurance,¡±Nov. 23, 2016, http://stories.lemonade.com
 
10. A. Kittur, B. Smus, S. Khamkar, and R.E. Kraut, ¡°CrowdForge: Crowdsourcing Complex Work,¡± in ¡°Proceedings of the 24th Annual ACM Symposium Adjunct on User Interface Software and Technology,¡± ed. J. Piece, M. Agrawala, and S. Klemmer (New York: ACM Press, 2011).


11. T.W. Malone, J.V. Nickerson, R. Laubacher, L.H. Fisher, P. de Boer, Y. Han, and W.B. Towne, ¡°Putting the Pieces Back Together Again: Contest Webs for Large-Scale Problem Solving,¡± March 1, 2017, ?https://ssrn.com

12. J. Wolfers and E. Zitzewitz, ¡°Prediction Markets,¡± Journal of Economic Perspectives 18, no. 2 (2004): 107-126.


13. J. Wolfers and E. Zitzewitz, ¡°Interpreting Prediction Market Prices as Probabilities,¡± working paper W12200, National Bureau of Economic Research, Cambridge, Massachusetts, May 2006.


14. V. Granville, (blog),  ¡°21 Data Science Systems Used by Amazon to Operate Its Business¡± Nov. 19, 2015.






Human-Computer ¡®Super-minds¡¯ Redefine the Future of Work
 
Recently, the Trends editors presented a Webinar about the impact of AI and other digital technologies on economic growth and productivity. (If you missed it, we¡¯ve included a link in this month¡¯s printable edition.) The focus was on ways that the synergy between human and machine intelligence would create economic value far in excess of the sum of the parts. If, and by what mechanism this will happen, is currently the subject of intense debate in scientific, business, and government circles.


This ongoing, and sometimes loud, debate about how many and what kinds of future jobs smart machines will leave for humans to do is missing a salient point; that is, ¡°Just as the automation of human work in the past allowed people and machines to do many things that couldn¡¯t be done before, groups of people and computers working together will be able to do many things in the future that neither can do alone now.¡±


To think about how this will happen, it¡¯s useful to contemplate an obvious but not widely appreciated fact: Virtually all human achievements ? from developing written language to making a turkey sandwich ? require the work of groups of people, not just lone individuals. Even the breakthroughs of individual geniuses like Albert Einstein weren¡¯t conjured out of thin air; they were erected on vast amounts of prior work by others.

 
According to MIT professor Thomas W. Malone, human groups that accomplished all these things can be described as ¡°superminds.¡± In his ground-breaking new book Superminds: The Surprising Power of People and Computers Thinking Together, Malone defines a supermind as ¡°a group of individuals acting together in ways that seem intelligent.¡±


Today, superminds take many forms including:


- the hierarchies in most businesses and other organizations;


- the markets that help create and exchange many kinds of goods and services;


- the communities that use norms and reputations to guide behavior in many professional, social, and geographical groups; and


- the democracies that are common in governments and some other organizations.


All superminds have a kind of collective intelligence, an ability to do things that the individuals in the groups couldn¡¯t have done alone. What¡¯s new is that machines can increasingly participate in the intellectual, as well as the physical, activities of these groups. That means we will be able to combine people and machines to create superminds that are smarter than any groups of individuals our planet has ever known.


To do that, we need to understand how people and computers can work together more effectively on tasks that require intelligence. And for that, we need to define intelligence.


As Professor Malone observes, ¡°The concept of intelligence is notoriously slippery, and different people have defined it in different ways. For our purposes, let¡¯s say that intelligence involves the ability to achieve goals. And since we don¡¯t always know what goals an individual or group is trying to achieve, let¡¯s say that whether an entity ¡°seems¡± intelligent depends on what goals an observer attributes to it."


Based on these assumptions, we can define two kinds of intelligence. The first is specialized intelligence, which is the ability to effectively achieve specific goals in a given environment. This means that an intelligent entity will do whatever is most likely to help it achieve its goals, based on everything it knows. Stated even more simply, specialized intelligence is ¡°effectiveness¡± at achieving specific goals. In this sense, then, specialized collective intelligence is ¡°group effectiveness,¡± and a supermind is an effective group.


The second kind of intelligence is more broadly useful and often more interesting. It is general intelligence, which is the ability to achieve a wide range of different goals effectively in different environments. This means that an intelligent actor needs not only to be good at a specific kind of task, but also to be good at learning how to do a wide range of tasks. In short, this definition of intelligence means roughly the same thing as ¡°versatility¡± or ¡°adaptability.¡± In this sense, then, general collective intelligence means ¡°group versatility¡± or ¡°group adaptability,¡± and here, a supermind is defined as a versatile or adaptable group.


This raises the question: What kind of intelligence does a computer have?


The distinction between specialized intelligence and general intelligence helps clarify the difference between the abilities of today¡¯s computers and human abilities. Some artificially intelligent computers are far ¡°smarter¡± than people in terms of certain kinds of specialized intelligence. But one of the most important things most people don¡¯t realize about AI today is that it is all very specialized.


Google¡¯s search engine is great at retrieving news articles about baseball games, for example, but it can¡¯t write an article about your son¡¯s Little League game. IBM¡¯s Watson beats humans at Jeopardy! but the program that played Jeopardy! can¡¯t play tic-tac-toe, much less chess.  And, while Tesla¡¯s cars can sort of, drive themselves, they still can¡¯t pick up a box from a warehouse shelf.


Of course, there are computer systems that can do these other things. But the point is that they are all different, specialized programs, not a single general AI that can figure out what to do in each specific situation. Humans, with their general intelligence, must write programs that contain rules for solving different specific problems, and humans must decide which programs to run in a given situation.


In fact, none of today¡¯s computers are anywhere close to having the level of general intelligence of any normal human 5-year-old. No single computer today can converse sensibly about the vast number of topics an ordinary 5-year-old can, not to mention the fact that the child can also walk, pick up weirdly shaped objects, and recognize when people are happy, sad, or angry.


How soon, if ever, will this change? Progress in the field of artificial intelligence has been notoriously difficult to predict ever since its early days in the 1950s. When researchers Stuart Armstrong and Kaj Sotala analyzed 95 predictions made between 1950 and 2012, about when general AI would be achieved they found a strong tendency for both experts and nonexperts to predict that it would be achieved between 15 and 25 years in the future, regardless of when the predictions were made. In other words, general AI has always seemed about 20 years away for the last 60 years.


More recent surveys and interviews tend to be consistent with this long-term pattern: As of 2018, lay people and AI experts both still predict that general AI will be here in about 15 to 25 years.  So while we certainly don¡¯t know for sure, there is good reason to be skeptical of anyone confidently predicting that general AI will appear in the next couple of decades. MIT¡¯s Malone believes that, barring some major societal disasters, it is very likely that general AI will appear ¡°someday,¡± but probably not until quite a few decades in the future. The Trends editors agree.


Until then, all uses of computers will need to involve humans in some way. In many cases today, people are doing parts of a task that machines can¡¯t do. But even when a computer can do a complete task by itself, people are always involved in developing the software and usually modifying it over time. They also decide when to use different programs in different situations and what to do when things go wrong.


Given the inevitable synergy between them, how can people and computers work together to create value?


According to Malone, one of the most intriguing possibilities for how people and computers can work together comes from an analogy with how the human brain is structured. There are many different parts of the brain that specialize in different kinds of processing, and these parts somehow work together to produce the overall behavior we call intelligence. For instance, one part of the brain is heavily involved in producing language, another in understanding language, and still another in processing visual information. Marvin Minsky, one of the fathers of AI, called this architecture a ¡°society of mind.¡±


Minsky was primarily interested in how human brains worked and how artificial intelligence programs might be developed, but his analogy also suggests a surprisingly important idea for how superminds consisting of both people and computers might work: Long before we have general AI, we can create more and more collectively intelligent systems by building societies of mind that include both humans and machines, each doing part of the overall task.


In other words, instead of having computers try to solve a whole problem by themselves, we can create hybrid ¡°cyber-human systems¡± where multiple people and multiple machines work together on the same problem. In some cases, the people may not even know ? or care ? whether they are interacting with another human or a machine. People can supply the general intelligence and other skills that machines don¡¯t have. The machines can supply the knowledge and other capabilities that people don¡¯t have. And, together, these systems can act more intelligently than any person, group, or computer has done before.


How is this different from most current thinking about AI? Many people today assume that computers will eventually do most things by themselves and that we should put ¡°humans in the loop¡± in situations where people are still needed. But it¡¯s probably far more useful to realize that most things now are done by groups of people, and we should put computers into these groups in situations where that is helpful. In other words, we should move away from thinking about ¡°putting humans in the loop¡± to ¡°putting computers in the group.¡±


In, Superminds, Malone asks, ¡°If businesses or other organizations want to use computers as part of human groups, what roles should computers play in those groups?¡± Thinking about the roles that people and machines play today, there are four obvious possibilities. People have the most control when machines act only as tools; and machines have successively more control as their roles expand to become assistants, peers, and, finally, managers. Let¡¯s examine each of these roles¡±


A physical tool, like a hammer or a lawn mower, provides some capability that a human doesn¡¯t have alone; but the human user is directly in control at all times, guiding its actions and monitoring its progress. Information tools are similar. When you use a spreadsheet, the program is doing what you tell it to do, which often increases your specialized intelligence for a task like financial analysis.


But many of the most important uses of automated tools in the future won¡¯t be to increase individual users¡¯ specialized intelligence, but to increase a group¡¯s collective intelligence by helping people communicate more effectively with one another. Even today, computers are largely used as tools to enhance human communication. With email, mobile applications, the Web (in general,) and sites such as Facebook, Google, Wikipedia, Netflix, YouTube, and Twitter, we¡¯ve created the most massively connected groups the world has ever known. In all these cases, computers are not doing much ¡°intelligent¡± processing; they are primarily transferring information created by humans to other humans.


While we often overestimate the potential of AI, we often underestimate the potential power of this kind of hyper-connectivity among the 7 billion or so amazingly powerful information processors called human brains that are already on our planet.


Unlike a tool, a human assistant can work without direct attention and often takes the initiative in trying to achieve the general goals someone else has specified. Automated assistants are similar, but the boundary between tools and assistants is not always a sharp one. For instance, text-messaging platforms are mostly tools, but they sometimes take the initiative and autocorrect your spelling, occasionally with hilarious results.


Another example of an automated assistant is the software used by the online clothing retailer Stitch Fix Inc, to help its human stylists recommend items to customers. Stitch Fix customers fill out detailed questionnaires about their style, size, and price preferences, which are digested by machine-learning algorithms that select promising items of clothing.


The algorithmic assistant in this partnership is able to take into account far more information than human stylists can. For instance, jeans are often notoriously hard to fit, but the algorithms are able to select for each customer a variety of jeans that other customers with similar measurements decided to keep.


And it is the stylists who make the final selection of five items to send to the customer in each shipment. The human stylists are able to take into account information the Stitch Fix assistant hasn¡¯t yet learned to deal with ? such as whether the customer wants an outfit for a baby shower or a business meeting. And, of course, they can relate to customers in a more personal way than the assistant does. Together, the combination of people and computers provides better service than either could alone.


Some of the most intriguing uses of computers involve roles in which they operate as human peers rather than assistants or tools, even in cases where there isn¡¯t much actual artificial intelligence being used. For example, if you are a stock trader, you may already be transacting with an automated program-trading system without knowing it.


And if your job happened to be dealing with insurance claims for a New York City company called Lemonade Insurance Agency LLC, you already have an automated peer named ¡°AI Jim.¡± AI Jim is a chatbot, and Lemonade¡¯s customers file claims by exchanging text messages with it. If the claim meets certain parameters, AI Jim pays it automatically and almost instantly. If not, AI Jim refers the claim to one of its human peers, who completes the job.


What about the manager role? Human managers delegate tasks, give directions, evaluate work, and coordinate others¡¯ efforts. Machines can do all these things, too, and when they do, they are performing as automated managers. Even though some people find the idea of a machine as a manager threatening, we already live with mechanical managers every day. A traffic light directs drivers; an automated call router delivers work to call center employees. And most people don¡¯t find either situation threatening or problematic.


It¡¯s likely that there will be many more examples of machines playing the roles of managers in the future. For instance, the CrowdForge system crowdsources complex tasks such as writing documents. In one experiment, the system used online workers (recruited via the Amazon Mechanical Turk online marketplace) to write encyclopedia articles. For each article, the system first asked an online worker to come up with an outline for the article. Then it asked other workers to find relevant facts for each section in the outline. Next, it asked still other workers to write coherent paragraphs using those facts. Finally, it assembled the paragraphs into a complete article. Interestingly, independent readers, on average, judged articles written in this manner to be better than articles written by a single person.


Now that we understand the roles machines can play, let¡¯s examine the cognitive processes needed if you want to design a supermind (like a company or a team) that can act intelligently. Every mind, whether it is an individual or group needs to perform some or all of these five cognitive processes:


1. create possibilities for action,


2. decide which actions to take,


3. sense the external world,


4. remember the past, and


5. learn from experience.
 
Entities that act intelligently whether they are people, computers, or groups, need to do these things. As Malone observes, ¡°computers can help do all these things in new ways that often, but not always, make the superminds smarter.¡±


He uses the example of strategic planning at a large consumer products company similar to P&G.


Today, corporate strategic planning in large companies usually involves a relatively small group of people, mostly senior executives, their staff, and perhaps some outside consultants. But what if we could use technology to involve far more people and let machines do some of the thinking?


Consider process #1: create possibilities for action.


As we discussed earlier, one of the most important roles for computers is as a communication tool that allows much larger groups of people to think together productively. A promising approach for doing that within the strategic planning process is to use a family of related online contests, called a contest web. https://sloanreview.mit.edu/article/how-human-computer-superminds-are-redefining-the-future-of-work/ - ref10  There could be separate online contests for strategies at different levels of the organization. For example, if P&G used this approach, the company might have separate contests for each brand, such as Pantene shampoo, Head & Shoulders shampoo, and Tide laundry detergent. It could also have separate contests for how to combine the strategies of the brands in each business unit, such as hair care and fabric care. And the company could have another contest aimed at combining the business unit strategies into an overall corporate strategy.


Each contest could be open to many company employees, perhaps all of them. Anyone in the contest could propose a strategic option, and others could comment on or help develop the idea. Eventually there would be one winning strategy chosen in each challenge, but during the planning process, it would be important to consider a number of different options.


Opening this process to lots of people could allow surprising new options to arise. For instance, a group of young, tech-savvy employees, who would never have been included in a traditional corporate strategic-planning process, might propose a new cosmetics concept involving skin and eye makeup specially formulated for individual customers who upload selfies to the website.


Consider process #2: decide which actions to take.


One benefit of involving more people in generating strategic possibilities is that you get far more possibilities. But deciding which possibilities are most promising requires evaluating them all, and new technologies also make it easier to involve far more people and more kinds of expertise in evaluation. For instance, P&G might want its manufacturing engineers to evaluate whether it is technically feasible to make a product, its operations managers to estimate manufacturing cost, and perhaps outside market researchers to predict the demand for the product at different price points.


In some cases, it may be worth combining many people¡¯s opinions about some of these questions. For instance, P&G might use online prediction markets to estimate the demand for products. Such markets have already been used to successfully predict movie box-office receipts, winners of U.S. presidential elections, and many other things. Somewhat like futures markets, prediction markets let people buy and sell ¡°shares¡± of predictions about future events. For instance, if you believe that global sales for Pantene shampoo will be between $1.8 billion and $1.9 billion per year, you could buy a share of this prediction. If the prediction is right, then you will get, say, $1 for each share you own of that prediction. But if your predictions are wrong, you will get nothing.  That means the resulting price in the prediction market is essentially an estimate of the probability that sales will be in this range.
Next, consider process #3: sense the external world.


A key necessity for developing good strategic plans is the ability to effectively sense what is going on in the external world: What do customers want now? What are our competitors doing? What new technologies might change our industry? By far the most visible means for improving sensing today are big data and data analytics.


For example, P&G might analyze the positive and negative comments about its products in online social networks to gauge how customer sentiment about the products is changing. It might conduct online experiments at different prices for the products. And it might be able to obtain early warnings about sales changes by installing video and touch-sensitive floors in retail stores to analyze how much time customers spend looking at P&G¡¯s products versus competitors¡¯ products.


P&G might even be able to do something Amazon has already done: use vast amounts of data to develop detailed models of many parts of its business, such as customers¡¯ responses to prices, ads, and recommendations, and sort out how supply-chain costs vary with inventory policies, delivery methods, and warehouse locations.  With tools like these, computers can take over much of the quantitative work of strategic planning by running the numbers, and people can use their general intelligence to do more qualitative analysis.


Then, consider process #4: remember the past.


Another way technology can help superminds create better strategic plans is by helping them remember good ideas that others have had in similar situations. For example, software assistants embedded in an application for generating strategy proposals could automatically suggest generic strategies, such as the following:


- Integrating forward by taking on some of the tasks done by your customers, or integrating backward by taking on some of the tasks done by your suppliers;


- Outsourcing more of the things you do internally to freelancers or specialized providers;


- Moving into related market segments, nearby geographical regions, or other markets frequented by your customers. And,


- When you pick one of these options, the system could then automatically provide a template including the kinds of details necessary for that type of strategy.


By remembering good strategies from other settings, software assistants could help generate new strategies for your setting. For instance, if the strategy of using selfies to customize cosmetics was successful, a software assistant could suggest similar strategies that let customers use smartphones to customize P&G¡¯s other products: shampoos, toothpastes, laundry detergents, potato chips, and others. Of course, many of these combinations would be silly or impractical and could be very quickly eliminated, but some might be surprisingly useful. And even silly options sometimes give rise to good ideas.


For instance, in the early 2000s, P&G developed a process for printing entertaining pictures and words on Pringles potato chips.https://sloanreview.mit.edu/article/how-human-computer-superminds-are-redefining-the-future-of-work/ - ref14  An approach like this might have led to another promising idea: using this technology to let customers buy Pringles that are preprinted with images that customers specify themselves.


Now, consider process #5: learn from experience.


If a system is used over time, it can help a supermind learn from its own experience to become more and more effective. For example, it might help recognize strategic ideas that most people wouldn¡¯t recognize in their early stages. In the 1970s, when Steve Jobs and Bill Gates were first playing around with what we now call personal computers, most people had no idea that these strange, awkward devices would turn out to be among the most innovative and influential products of the next several decades.


It¡¯s certainly not easy to rapidly filter ideas without missing these diamonds in the rough. But perhaps it¡¯s possible to identify the unusual people who do have this skill by systematically tracking over time how accurately, and how early, people predict technological advances and other kinds of breakthroughs. Then, we could ask these people to take a second look at some of the ¡°crazy¡± ideas that we might otherwise reject.


Another intriguing possibility is to use ¡°learning loops¡± that begin with human experts evaluating strategies manually and then, gradually automate more and more of the work as the machines get better at predicting what human experts would do.


In a company such as P&G, which generally tries to compete on quality rather than price, experts evaluating product strategies usually reject those that emphasize competing on low price. But instead of programmers writing programs that explicitly filter out low-price strategies, a machine-learning program might recognize that experts often reject these types of strategies and start suggesting this action. If the experts agree with the suggestion enough times, then the program might stop asking and just do the filtering automatically.


Business strategy is just one of the myriad problems where smart machines will make existing superminds, as well as totally new ones outperform those composed only of humans. This will enable us to raise economic output at a much faster rate than today¡¯s slow population growth would imply, without creating massive unemployment. The big challenge remains providing humans with the skills to take advantage of machine intelligence and building machines that can maximize human performance. In many cases, this will enable tomorrow¡¯s superminds to routinely do things that have heretofore been impossible for any group of humans or machines.


Given this trend, we offer the following forecasts for your consideration.


First, by 2025, the kind of cyber-human business strategy supermind described earlier will be available as a service from one or more consulting firms.


Given how complex such a system could be and how generic much of the work would be, it¡¯s unlikely that companies will develop proprietary systems for this purpose. Instead, today¡¯s consulting firms, or their future competitors, will provide much of this functionality as a service. The firm will have a collection of people at many levels of expertise ¡°on call¡± who could rapidly generate and evaluate various strategic possibilities, along with software to automate some parts of the process and help manage the rest. Such a ¡°strategy machine¡± will use a supermind of people and computers to generate and evaluate millions of possible strategies for a single company. Over time, computers will come to do more and more of the work, but people will still be involved in key parts of the process. The product will be a handful of the most promising strategic options from which the human managers of the company will choose. And,


Second, human-computer superminds will be used to solve all kinds of difficult business and societal problems.


Computers will use their specialized intelligence to solve parts of the problem, people will use their general intelligence to do the rest, and computers will help engage and coordinate far larger groups of people than has ever been possible. Applications range from designs for new houses, smartphones, factories, cities, and educational systems, to formulating antiterrorism approaches and medical treatment plans. The possibilities are virtually unlimited.
References


1. MIT Sloan Management Review. Summer 2018. Thomas W. Malone. How Human-Computer ¡®Superminds¡¯ are Redefining the Future of Work.

https://sloanreview.mit.edu/article/how-human-computer-superminds-are-redefining-the-future-of-work/


2. Superminds: The Surprising Power of People and Computers Thinking Together (Little Brown & Company, 2018). 2018. Thomas W. Malone.

https://www.amazon.com/Superminds-Surprising-Computers-Thinking-Together/dp/0316349135/ref=tmm_hrd_swatch_0?_encoding=UTF8&qid=


3. Rethink Robotics (blog), November 10, 2014. Rodney Brooks. Artificial Intelligence Is a Tool, Not a Threat.
4. S. Armstrong and K. Sotala. How We¡¯re Predicting AI ? or Failing Toin ¡°Beyond AI: Artificial Dreams,¡± ed. J. Romportl, P. Ircing, E. Zackova, M. Polak, and R. Schuster (Pilsen, Czech Republic: University of West Bohemia, 2012): 52-75.
5. N. Bostrom, Superintelligence: Paths, Dangers, Strategies(Oxford, U.K.: Oxford University Press, 2014).
6. M. Minsky, ¡°Society of Mind¡± (New York: Simon and Schuster, 1988).
7. L. Biewald, ¡°Why Human-in-the-Loop Computing Is the Future of Machine Learning,¡± Data Science (blog), Nov. 13, 2015, www.computerworld.com
8. H.J. Wilson, P. Daugherty, and P. Shukla, ¡°How One Clothing Company Blends AI and Human Expertise,¡± Nov. 21, 2016, http://hbr.org
9. S. Wininger, ¡°The Secret Behind Lemonade¡¯s Instant Insurance,¡±Nov. 23, 2016, http://stories.lemonade.com
10. A. Kittur, B. Smus, S. Khamkar, and R.E. Kraut, ¡°CrowdForge: Crowdsourcing Complex Work,¡± in ¡°Proceedings of the 24th Annual ACM Symposium Adjunct on User Interface Software and Technology,¡± ed. J. Piece, M. Agrawala, and S. Klemmer (New York: ACM Press, 2011).
11. T.W. Malone, J.V. Nickerson, R. Laubacher, L.H. Fisher, P. de Boer, Y. Han, and W.B. Towne, ¡°Putting the Pieces Back Together Again: Contest Webs for Large-Scale Problem Solving,¡± March 1, 2017, https://ssrn.com
12. J. Wolfers and E. Zitzewitz, ¡°Prediction Markets,¡± Journal of Economic Perspectives 18, no. 2 (2004): 107-126.
13. J. Wolfers and E. Zitzewitz, ¡°Interpreting Prediction Market Prices as Probabilities,¡± working paper W12200, National Bureau of Economic Research, Cambridge, Massachusetts, May 2006
14. V. Granville, (blog),  ¡°21 Data Science Systems Used by Amazon to Operate Its Business¡± Nov. 19, 2015,


ÀÌÀü

¸ñ·Ï